基于 GIS 和 RS 的黑龙江省水土流失影响因素分析

戴红霞,许慧敏,韩玉冰 (东北石油大学化学化工学院,黑龙江大庆 163318)

摘要 采用 GIS 和 RS 遥感影像技术对黑龙江省的地理特性及地貌情况进行分析,以 DEM 基础数据采用 ArcGIS 的方法确定影响因子; 利用 ArcGIS 软件对各影响因子数据进行处理,根据各影响因子图层加权叠加运算侵蚀强度对水土流失进行评价。结果表明,黑龙江省 大部分区域中的土壤侵蚀强度多处于微度,少数为轻度土壤侵蚀的地区,没有产生极强度土壤侵蚀的地区,仅有部分地区土壤侵蚀的强 度是中度、强度和剧烈。2018 年水土流失总面积占黑龙江省土地总面积的 7.38%,黑龙江省水土流失情况在逐年增加,应该引起重视。 关键词 水土流失;GIS;RS;影响因素;黑龙江省

文章编号 0517-6611(2021)24-0109-05 doi:10.3969/j.issn.0517-6611.2021.24.025

开放科学(资源服务)标识码(OSID):

Analysis of Influencing Factors of Soil Erosion in Heilongjiang Province Based on GIS and RS DAI Hong-xia, XU Hui-min, HAN Yu-bing (College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing,

Heilongjiang 163318)

Abstract GIS and RS remote sensing image technology were used to analyze the geographic characteristics and landforms of Heilongjiang Province, the method of ArcGIS was used to determine the impact factor based on DEM basic data. The ArcGIS software was used to process the data of each influencing factor, and the soil erosion was evaluated according to the weighted superposition of each influencing factor layer and the erosion intensity. The results showed that the intensity of soil erosion in most areas of Heilongjiang Province was mostly slightly, a few were areas with mild soil erosion, there was no area with extreme strength soil erosion, and only some areas had moderate, strong and severe soil erosion. In 2018, the total area of soil erosion accounted for 7.38% of the total land area of Heilongjiang Province. The situation of soil erosion in Heilongjiang Province was increasing year by year, which should be paid attention to.

Key words Soil erosion; GIS; RS; Influencing factors; Heilongjiang Province

人类对土地的利用受自然地貌因素的影响较大^[1],同样 人类的生产活动也会影响土地资源。水土流失问题一直是 一个重大的环境和生态问题^[2]。世界上许多国家和地区不 断进行着区域水土流失空间分布情况调查分析^[3],确定水土 流失量及其空间分布位置^[4],建立生态环境和社会环境的 GIS 信息系统便于治理^[5-7]。随着经济的快速发展,带动了 各行各业的发展,从而引发土地利用率增加,对土地不当的 开垦利用引发水土流失造成土地退化^[8],农用地容易引发和 加重土壤侵蚀^[9],还有陡坡地、沟壑砂土地因自然地理缺陷 易受雨水侵蚀的危害造成严重水土流失^[10-11]。笔者以 GIS 和 RS 方法^[12-13]分析了黑龙江省 2018 年水土流失情况及主 要影响因子,并提出相应的整治对策^[14]。

1 资料与方法

1.1 研究区概况 黑龙江省是位于我国最北端和最东端纬 度最高的省份,地理位置是 121°11′~135°05′E、43°25′~53° 33′N,南北横跨 10 个纬度 2 个热量带,东西横跨 14 个经度 3 个湿地^[15]。黑龙江边界长 3 045 km,北部和东部与俄罗斯接 壤(图 1)。该区域是从亚太经陆路通往俄罗斯和欧洲大陆 的重要通道,也是我国作为边界开放的重要窗口。黑龙江省 地域辽阔,地理条件优越,地形地貌类型多样,走势大致呈西 北和东南地区高、东北和西南地区低。黑龙江省大部分地形 是山地、平原、台地和水域等。根据 2019 年黑龙江省统计年 鉴调查,全省土地总面积为 452 532.26 km²,占我国土地总面 积的 4.7%。黑龙江省是全国热量最少的省份,整体位于中

作者简介 戴红霞(1970—),女,辽宁沈阳人,副教授,在读博士,从事 环境评价技术、环境治理技术、环境监测技术等研究。 收稿日期 2021-03-30 温带,属大陆性寒带季风气候。黑龙江省也是全国气温最低的省份,全省年平均气温仅为 -4~5 ℃。正是由于这种独特的地理位置与气候环境使得黑龙江省仍然存在水土流失的风险。

1.2 数据来源为研究黑龙江省近年来水土流失变化情况,该研究采用黑龙江省遥感影像和 DEM 数据作为基础数据。 遥感影像主要为 2018 年相关数据,分辨率为 16 m; DEM 数据为原始高程数据,分辨率为 90 m。

1.3 研究方法

1.3.1 影响因子的选取。黑龙江地势西高东低,最高海拔是 1694 m。该分析区域地理位置独特,不同海拔对水土流失的 影响也不尽相同,中低海拔地区水土流失严重。植被的覆盖 情况对于水土流失影响巨大,植被情况良好的地区水土流失 情况会适当缓解,可以在一定程度上对水土流失的发生产生 抑制效果,而人类的生产活动与植被覆盖情况息息相关。不 同类型的土地利用受人为生产活动的影响程度也不相同,但 有很大相关性,并且土地利用类型和地表植被覆盖度有密不 可分的联系。因此,结合黑龙江省的地理特性,该研究以高 程、坡度、沟壑密度、植被覆盖度和土地利用类型作为评价水 土流失的重要影响因子。

1.3.2 影响因子的分级。

1.3.2.1 高程。高程对水土流失的影响是不能被忽视的,一般来说,高程越高,水土流失越不易发生。此次研究是利用 DEM 数据,在 ArcGIS 中通过校正以及投影转换处理等得到 黑龙江省的 DEM 数据,利用重分类将高程分为6个等级,分别为-3~300 m、>300~350 m、>350~400 m、>400~450 m、>450~500 m、>500 m,并分别赋值1、2、3、4、5、6,如图2。

1.3.2.2 坡度。决定水土流失是否发生的重要因素之一是 坡度,通常来说,水土流失与坡度呈正相关,高坡度地区发生 水土流失的风险增大。根据《土壤侵蚀分类等级标准》(SL 190-2007)的相关要求,该研究使用 DEM 数据,计算黑龙江 省的坡度,提取坡度因子并将坡度分为6个等级,分别为0~ 5°、>5°~10°、>10°~15°、>15°~20°、>20°~25°、>25°~90°,分 别赋值为1、2、3、4、5、6。

图 1 黑龙江省概况 Fig.1 Overview of Heilongjiang Province

1.3.2.3 沟壑密度。沟壑密度是判断地面被河道切割破碎 程度的一个十分必要的重要指标,一般情况下,地面破碎程 度与沟壑密度呈正相关。随着沟壑密度增大,土质破碎程度 增加,平均坡度逐渐增大,地表物质的稳定性越差,地表径流 越容易形成,土壤侵蚀越严重,水土流失越严重。因此,沟壑 的大小可以反映研究区域水土流失的严重程度。沟壑密度 也称沟谷密度,指单位面积内沟壑总长度,数学表达式可表 示为:

$$D_s = \frac{\Sigma L}{A} \tag{1}$$

式中, D_s 为沟壑密度(km/km²); ΣL 为研究区域内沟壑总长 度(km); A 为特定研究区域的面积(km²)。

1.3.2.4 植被覆盖度。枯枝落叶层和植被冠层可以阻拦部 分降水并且可以减少雨水对于土壤的侵蚀,减少一部分地表 径流。而植被的根系在土壤中盘根错节固定土壤结构使其 稳定,防止坡面侵蚀,使泥石流和滑坡等自然灾害发生的风 险减少。因此,植被覆盖度在该研究中对于评价黑龙江省水 土流失情况十分重要。该研究利用黑龙江省 2018 年预处理 后的遥感影像,在 ArcGIS 中计算归一化植被指数(NDVI), 再将其转化为植被覆盖度,并提取植被覆盖度因子^[16]。ND-VI 的计算公式如下:

$$NDVI = \frac{IR - R}{IR + R}$$
(2)

式中,IR 为红外波段的像素值;R 为红光波段的像素值。

根据《土壤侵蚀分类等级标准》(SL 190—2007)的相关 要求,结合黑龙江省实际情况使变化最大可视化,将植被覆 盖度分为6个等级,分别为<15%、15%~30%、>30%~40%、> 40%~70%、>70%~80%、>80%,并分别赋值为1、2、3、4、5、6。 1.3.2.5 土地利用类型因子。不同土地利用类型对土壤侵 蚀有不同程度的影响。该研究利用预处理后的2018年黑龙 江省遥感影像,根据《土地利用现状分类》(GB/T 210100— 2017),并结合黑龙江省实际情况,采用 AreGIS 图形将黑龙 江省的土地利用类型分为耕地、林地、草地、水域、建设用地 和未利用土地6类。基于黑龙江省的基本情况,根据专家评 估和参考与水土流失相关文献,将耕地赋值为1,林地赋值为 2,草地赋值为3,水域赋值为4;建设用地包括城乡居民、工 矿及交通运输用地,赋值为5;其余包括沙地、戈壁、盐碱地、 沼泽地、裸土地、裸岩石质地等未利用土地赋值为6。

1.3.3 水土流失评价。该研究用来评价水土流失强度是根据土壤侵蚀综合指数,其计算公式为:

$$W = \sum_{i=1}^{n} (A_i B_i) \tag{3}$$

式中,W为土壤侵蚀综合指数;A_i为第 i 个指标因子等级划 分相应的赋值;B_i为第 i 个指标因子的影响权重;n 为指标因

km

子数量,n=5。

根据《土壤侵蚀分类等级标准》(SL 190—2007),并结合 黑龙江省的实际情况,该研究将黑龙江省的高程、坡度、沟壑 密度、植被覆盖度、土地利用类型因子的权重分别设为 0.10、 0.30、0.20、0.25、0.15,并根据土壤侵蚀综合指数对水土流失 强度等级进行水土流失强度分级划分:土壤侵蚀综合指数< 2.5,侵蚀强度为微度;2.5~3.0,侵蚀强度为轻度;>3.0~3.5, 侵蚀强度为中度;>3.5~4.0,侵蚀强度为强度;>4.0~5.0,侵 蚀强度为极强度;>5.0,侵蚀强度为剧烈。

2 结果与分析

2.1 影响因子评价 该研究利用 GIS 和 RS 遥感影像技术 对黑龙江省的地理特性及地貌情况进行分析,以 DEM 数据 作为基础数据,采用 AreGIS 的方法确定了 5 个影响因子,分 别为高程、坡度、沟壑密度、植被覆盖度和土地利用类型。

利用 DEM 数据,在 ArcGIS 中进行沟谷网络提取与沟壑 密度计算,得出东北黑土区的沟壑密度在 1.50 km/km²,其中 的浅沟和切沟发生的频率较高,沟长小于 100 m 的以浅沟为 主,沟长 100~200 m 的浅沟和切沟数量相当,沟长大于 200 m 的主要是切沟。

通过对黑龙江省 2018 年不同植被覆盖度区面积进行统 计,结果显示,2018 年黑龙江省以高植被覆盖区(植被覆盖度 >80%)为主,低植被覆盖区(植被覆盖度小于 40%)和中植 被覆盖区(40% ~ 80%)分别占总面积的1.22%和4.75%。从 时间变化来看,相比王亭月^[17]对 2016 年黑龙江全省高植被 覆盖区的研究发现,2018 年高植被覆盖区和低植被覆盖区面 积持续增加,中植被覆盖区面积减少了 1.25 万 km²,总植被 覆盖面积增加了 0.20 万 km²。

通过对黑龙江省 2018 年不同土地利用区面积进行统计,结果显示(图 3 和表 1),黑龙江省土地利用类型以林地和耕地为主(分别占 48.2%和 35.1%),其次依次为水域、草地、建设用地(分别占 4.8%、4.5%和 4.0%),未利用土地占比最低(3.4%)。黑龙江省不同土地利用面积是不断转移改变的,计算 2015、2018 年黑龙江省不同土地利用面积转移矩阵,

结果表明(表 2 和图 4),2018 年有 14 727.12 km² 未利用土地 转化为林地,7 371.92 km² 未利用土地转化为草地,这对保土 固土产生了积极的影响。但 2018 年,草地退化为林地面积 达 10 675.04 km²,草地退化为未利用土地达 6 009.40 km²。黑龙 7 371.92 km²,耕地退化为未利用土地达 6 009.40 km²。黑龙 江省未利用土地主要是 5%以下植被覆盖度的沙地以碎砾石 为主的戈壁、植被稀少地表盐碱聚集的盐碱地以及地势平坦 低洼,排水不畅的沼泽地等。这些土地很难被利用,规划不 合理会产生更为严重的水土流失风险。

表 1 2018 年黑龙江省土地利用类型面积统计

 Table 1
 Statistics of land use type areas in Heilongjiang Province in 2018

 土地利用类型 Land use type	面积 Area//km ²	比例 Proportion//%
耕地 Cultivated land	158 890	35.1
林地 Forest	218 190	48.2
草地 Grassland	20 180	4.5
建设用地 Construction land	18 310	4.0
水域 Waters	21 710	4.8
未利用土地 Unused land	15 260	3.4

图 3 黑龙江省土地利用类型 Fig.3 Land use types in Heilongjiang Province

	衣 2 2015 和 2018 年个问工地利用面积转移矩阵
able 2	The transfer matrix of different land use areas in 2015 and 2018

				2018 年				
2015 年	草地	建设用地	耕地	林地	水域	未利用土地	总计	
	Grassland	Construction land	Cultivated land	Forest	Waters	Unused land	Total	
草地 Grassland	6 349.08	244.64	4 499.88	8 728.12	495.64	1 691.60	22 008.96	
建设用地 Construction land	405.84	2 301.44	6 776.64	762.56	222.88	322.24	10 791.60	
耕地 Cultivated land	6 418.08	5 541.28	132 363.04	16 577.80	3 593.96	9 918.76	174 412.92	
林地 Forest	10 675.04	469.56	12 665.60	163 682.12	758.80	3 222.68	191 473.80	
水域 Waters	489.92	125.44	1 602.48	1 068.52	5 466.92	974.36	9 727.64	
未利用土地 Unused land	7 371.92	307.04	6 009.40	14 727.12	3 776.48	10 658.92	42 850.88	
总计 Total	31 709.88	8 989.40	163 917.04	205 546.24	14 314.68	26 788.56	451 265.80	

2.2 水土流失评价 利用 ArcGIS 软件对各影响因子数据进行处理,根据各影响因子图层加权叠加运算侵蚀强度,得到 评估结果。从表 3 和图 5 可以看出,黑龙江省大部分区域中

的土壤侵蚀强度处于微度,少数为轻度土壤侵蚀的地区,没 有产生极强度土壤侵蚀的地区;仅有部分地区土壤侵蚀的强 度是中度、强度和剧烈,该区域主要集中于黑龙江省松嫩平

图 4 2015 和 2018 年黑龙江省土地利用面积转换 Fig.4 Land use area conversion in Heilongjiang Province in 2015 and 2018

原和三江平原附近。

2018 年黑龙江省土壤侵蚀强度以微度为主,占黑龙江省 水土流失面积的 80.2%,占黑龙江省面积的5.930%;轻度水 平占黑龙江省水土流失面积的 13.4%,占黑龙江省面积的 0.099%;中度水平占黑龙江水土流失面积的 5.2%,占黑龙江 省面积的0.038%;2018 年黑龙江省水土流失总面积占研究区 土地总面积的 7.38%。结果表明,黑龙江省水土流失情况逐 年加重,应该引起重视。

表 3 2018 年侵蚀强度的水土流失面积分布情况 Table 3 Statistics on the distribution of soil erosion of erosion intensity

in 2018		
等级 Grade	面积 Area km ²	占省水土流失面积比例 Percentage of soil erosion area in the province//%
微度 Slight	26 812.23	80.2
轻度 Mild	4 481.84	13.4
中度 Moderate	1 727.02	5.2
强度 Intensity	249.39	0.8
极强度 Extreme intensity	0	0
剧烈 Severe	133.25	0.4
合计 Total	33 403.73	100

3 结论与讨论

该研究采用 GIS 和 RS 遥感影像技术对黑龙江省的地理 特性及地貌情况进行分析,以 DEM 数据作为基础数据,采用 AreGIS 的方法确定了高程、坡度、沟壑密度、植被覆盖度和土 地利用类型 5 个影响因子。根据土壤侵蚀综合指数对水土 流失强度等级进行水土流失强度分级划分,利用 AreGIS 软

图 5 2018 年黑龙江省土壤侵蚀强度

Fig.5 Soil erosion intensity of Heilongjiang Province in 2018

件对各影响因子数据进行处理,根据各影响因子图层加权叠 加运算侵蚀强度对水土流失进行评价,结果表明,黑龙江省 大部分区域中的土壤侵蚀强度处于微度,少数为轻度土壤侵 蚀的地区,没有产生极强度土壤侵蚀的地区;仅有部分地区 土壤侵蚀的强度是中度、强度和剧烈,该区域主要集中于黑 龙江省松嫩平原和三江平原附近。2018年水土流失总面积 占黑龙江省土地总面积的7.38%,黑龙江省水土流失情况逐 年加重,应该引起重视。需要对水土流失情况进行跟踪监 测,更需要及时治理。由于造成黑龙江省水土流失的主要原 因有自然地理位置高低不平的缺陷和土地利用不当的因素, 因此,需要强化农地、林地、草地生态建设,合理耕种,合理灌 溉,因地制宜和科学管理,加强水土保持的管控,防止人为乱 砍滥伐引发新的水土流失,同时需要加强对重点区域的保土 力度,减少中高区植被覆盖向低区过渡,采用高科技手段监 控,合理规划与利用土地以便综合防治水土流失,采用国内 外先进治理修复方法对黑龙江地域所属的沙地、盐碱地、戈 壁地以及沼泽地进行修复治理,使其向减少水土流失面积的 方向发展。

参考文献

- [1] WU L, JIANG J, LI G X, et al. Characteristics of pulsed runoff-erosion events under typical rainstorms in a small watershed on the Loess Plateau of China[J]. Scientific reports, 2018, 8:1–12.
- [2] TAN C J,CAO X,YUAN S, et al.Effects of long-term conservation tillage on soil nutrients in sloping fields in regions characterized by water and wind erosion[J].Scientific reports,2015,5:1–8.
- [3] BORRELLI P,ROBINSON D A,FLEISCHER L R,et al.An assessment of the global impact of 21st century land use change on soil erosion [J].Nature communications, 2017,8:1–13.
- [4] ROBINSON D A, PANAGOS P, BORRELLI P, et al.Soil natural capital in Europe: A framework for state and change assessment [J].Scientific reports, 2017,7:1-14.
- [5] LIANG Y R,LAL R,GUO S L, et al.Impacts of simulated erosion and soil amendments on greenhouse gas fluxes and maize yield in Miamian soil of central Ohio[J].Scientific reports,2018,8:1–11.
- [6] OLANIYA M, BORA P K, DAS S, et al.Soil erodibility indices under different land uses in Ri-Bhoi district of Meghalaya (India) [J].Scientific reports, 2020, 10:1–13.
- [7] HU X Q,LI Z W,NIE X D,et al.Regionalization of soil and water conser- 日然質原研究,2020(4):10-21.

(上接第108页)

立了加权 TOPSIS 模型,计算了各评价单元耕地提质改造潜力,并通过自然断点法将潜力分为高、中、低3个潜力区域, 面积分别为4841.50、10732.59和10355.86hm²,分别占江城 区耕地面积的18.67%、41.39%和39.94%;低潜力区耕地分布 较为集中,高、中潜力区分布相对分散,中潜力区的面积最 大、分布范围最广;高、中潜力区主要分布在双捷镇、平冈镇、 白沙街道和闸坡镇。

(2)通过对评价因子进行分级量化赋值发现,江城区地 形坡度、田面坡度等10个评价因子中,除了pH、排水条件、 剖面构型、表土质地等少数因子外,其他评价因子得分为100 分的比例较高;评价因子得分较高的区域,耕地提质改造潜 力较小,位于低潜力区,即稍加改造区;评价因子得分较低的 区域,耕地提质改造潜力较大,位于高潜力区,即重点改 造区。

3.2 合理化建议

(1)低潜力区耕地评价因子得分较高,耕地自然条件较 好,低潜力区内耕地提质改造成本较低,分布较为集中,为稍 加改造区;高、中潜力区改造成本较高,分布较为分散,且分 布于低潜力区周边,为重点整治区,高、中潜力区进行提质改 造提升的效益也较大。在选取耕地提质改造范围时,可将各 潜力区进行综合考虑,在集中整治的条件下获取规模效益。 vation aimed at ecosystem services improvement [J]. Scientific reports , 2020 , 10 ; 1–10.

- [8] LEE S, CHU M L, GUZMAN J A, et al.A comprehensive modeling framework to evaluate soil erosion by water and tillage [J/OL].Journal of environmental management, 2021, 279 [2020–11–17].https://doi.org/10.1016/ j.jenvman.2020.111631.
- [9] LI H Q,ZHU H S,QIU L P, et al.Response of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast China[J/OL]. Agriculture, ecosystems & environment, 2020, 302 (3) [2020-11-17].https://doi.org/10.1016/j.agee.2020.107081.
- [10] LIU J,LIU H H.Soil erosion changes during the last 30 years and contributions of gully erosion to sediment yield in a small catchment, southern China[J/OL].Geomorphology,2020,368[2020-11-17].https://doi.org/ 10.1016/j.geomorph.2020.107357.
- [11] 姚甜甜,张鹏,万丹,等.藏东南色季拉山迎风坡土壤物理性质垂直梯 度差异性分析[J].北方园艺,2019(24):94-102.
- [12] LIU B Y,XIE Y,LI Z G,et al.The assessment of soil loss by water erosion in China [J].International soil and water conservation research, 2020, 8 (4):430–439.
- [13] BENAUD P, ANDERSON K, EVANS M, et al. National-scale geodata describe widespread accelerated soil erosion[J].Geoderma, 2020, 371:1–13.
- [14] 王政峰,张源润,季波.宁夏黄土丘陵区侵蚀沟坡水土保持林营造技术 [J].北方园艺,2013(6):80-81.
- [15] 黑龙江[EB/OL].(2013-04-12)[2021-01-02].http://www.gov.cn/test/2013-04/12/content_2376349.htm.
- [16] 徐新良.中国年度植被指数(NDVI)空间分布数据集[EB/OL].[2021-01-02].https://www.resdc.cn/doi/doi.aspx? doiid=49.
- [17] 王亭月.2012~2018 年黑龙江省植被覆盖度动态变化分析[J].国土与 自然资源研究,2020(4):16-21.

(2)根据该研究结果,在未来进行耕地提质改造过程中, 高、中潜力区内耕地基础条件较差,提质改造的需求较为强 烈,且提质改造可产生比较明显的经济和社会效益。江城区 在进行提质改造选址时,可优先选取高、中潜力区内分布面 积较大的双捷镇、平冈镇、白沙街道和闸坡镇等镇(街道)的 耕地,并根据各镇民意支持度、经济条件等情况合理安排建 设时序。

参考文献

- [1]朱传民,郝晋珉,陈丽,等.基于耕地综合质量的高标准基本农田建设 [J].农业工程学报,2015,31(8):233-242.
- [2]杨建宇,张欣,徐凡,等基于 TOPSIS 和局部空间自相关的永久基本农田划定方法[J].农业机械学报,2018,49(4):172-180.
- [3] 旷开金,郑开焰,康雅婷,等.基于熵权一理想解法的城市复合系统资源 环境承载力时空分异研究[J].生态经济,2021,37(2):138-145.
- [4] 李一阳.基于 TOD 法的跳频同步研究与实现[D].南京:东南大学,2017.
- [5] 薛志斌基于 AHP-TOPSIS 法的高标准基本农田划定研究:以河南省 伊川县为例[D].郑州:河南农业大学,2018.
- [6] 刘婧,汤峰,张贵军,等.基于 TOPSIS 和矩阵组合的县域永久基本农田储备区划定时序研究[J].中国生态农业学报,2021,29(7):1224-1235.
- [7] 农芸耕地提质改造工程改进路径:以扶绥县为例[J].南宁师范大学学报(自然科学版),2019,36(3):94-98.
- [8] 杨建宇,杜贞容,杜振博,等.基于耕地质量评价和局部空间自相关的高标准农田划定[J].农业机械学报,2017,48(6):109-115.
- [9] 蔡湘文,唐蜜,宋玥凝恭城瑶族自治县高标准基本农田建设潜力研究 [J].国土资源科技管理,2019,36(5):56-65.
- [10] 孙博,李淑杰,刘亚男,等.高标准基本农田建设潜力及区域分布研究: 以延边州为例[J].湖北农业科学,2017,56(12):2228-2233.