离子交换树脂相分光光度法测定痕量 Hg(II)

沈淑君 (漳州职业技术学院食品与生物工程系,福建漳州 363000)

摘要 [目的]研究一种灵敏可行的测定痕量汞的方法。[方法] 在 pH 4.5 缓冲溶液介质中,Hg(II) - NaSCN - 结晶紫形成三元络合物, 通过阴离子交换树脂相中的富集测定,建立了树脂相分光光度法测定痕量 Hg(II)的新方法。[结果] 该方法最大吸收波长为 595 nm, Hg(II) 在 0.001 ~ 0.100 μg/mL 符合比尔定律,线性方程为 A = 7.319 6ρ_{Hg(II)} + 0.003 5,相关系数(r)0.999 6,检出限为 4.59 × 10⁻¹⁰ g/mL, 摩尔吸光系数(ε)1.46 × 10⁶ L/(mol·cm)。[结论] 该方法灵敏度高,可用于水样及土壤样品中痕量 Hg(II)的检测。 关键词 痕量 Hg(II);交换树脂相;吸光度法 中图分类号 0657.32 文献标识码 A 文章编号 0517 - 6611(2017)15 - 0060 - 03

Determination of Trace Mercury by Ion Exchange Resin Phase Spectrophotometry

SHEN Shu-jun (Department of Food and Biology Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 363000)

Abstract [Objective] To study a sensitive and feasible method for the determination of Trace Mercury. [Method] A new method for the determination of Trace Mercury by ion exchange resin phase spectrophotometry was developed, base on the complex was obtained from Mercury (II) – NaSCN – Crystal Violet in HAc – NaAc buffer solution (pH 4.5). [Result] The maximum absorption was 595 nm, the linear range was 0.001 – 0.100 µg/mL. The regression equation was $A = 7.319 6\rho_{Hg(II)} + 0.0035$ with correlation coefficient 0.999 6, and the detection limit was 4.59×10^{-10} g/mL with the molar absorptivity being 1.46×10^{6} L/(mol·cm). [Conclusion] The method has high sensitivity. It has been successfully applied to the determination of Mercury(II) in water and soil samples. **Key words** Trace Mercury(II):Resin phase;Spectrophotometric

汞是一种毒性很强的重金属,在环境中分布广、含量低, 易转化为毒性更强的有机汞^[1],并通过食物链在生物体内蓄 积,对环境和人类健康具有潜在威胁^[2]。因此,环境水体及 土壤中痕量 Hg(Ⅱ)的测定具有重要意义。目前,痕量 Hg(Ⅱ) 的测定方法主要有冷原子吸收法^[3]、冷原子荧光光谱法^[4]、 分光光度法^[5]等。冷原子吸收光谱和冷原子荧光光谱法使 用仪器较贵,不易普及。分光光度法由于设备简单、操作简 便,是常用的检测手段之一,但测定往往不够灵敏,通常需要 采用适当的预富集方法^[6],以提高分析结果的准确度和精密 度。树脂相光度法是集分离、富集、测定于一体^[7],具有良好 选择性和高灵敏度的一种固相光度法^[8],曾应用于多种金属 离子的定量分析^[9]。

研究发现汞与硫氰酸钠、结晶紫形成三元络合物,该显 色络合物在树脂相和水相中的最大吸收波长均为 595 nm,且 在树脂相中的吸光度显著提高,说明通过树脂相的富集,测 定的灵敏度大大增加。通过树脂相的直接富集和测定,简化 了分析步骤,克服了环境样品中汞的含量极低难以直接测定 的问题。由此建立了离子交换树脂相分光光度法测定环境 样品中痕量 Hg(II)的新方法,应用于环境水样及土壤样品中 痕量 Hg(II)的检测。

1 材料与方法

1.1 材料

1.1.1 仪器。UV - 360 型紫外可见近红外分光光度计(日本岛津公司); ECPH51001S 型精密酸度计(上海雷磁仪器 厂);电子天平(北京赛多利斯仪器系统有限公司)。

1.1.2 试剂。Hg(Ⅱ)标准溶液:准确称取 0.831 6 g 硝酸汞 晶体[Hg(NO₃)₂ · 1/2H₂O],以 0.2 mol/L HNO₃ 溶液溶解并

定容至 500 mL, 配制成 1 mg/mL 储备溶液。使用时逐级稀 释成 1 μg/mL Hg(II)标准工作溶液;结晶紫溶液:2.0×10⁻⁴ mol/L;硫氰酸钠溶液:10%;HAc – NaAc 缓冲溶液:pH 4.5; Dowex 50W – X2 阴离子交换树脂(美国陶氏化学公司);试 验所用试剂均为分析纯;试验用水为二次蒸馏水。

1.2 方法 取适量 Hg(II)标准溶液于 50 mL 容量瓶中,依次加入 3.0 mL 2.0×10⁻⁴ mol/L 结晶紫,2.0 mL 10% 硫氰酸 钠溶液,2.0 mL pH 4.5 的 HAc – NaAc 缓冲溶液,加水稀释 至 50 mL,摇匀,移入 100 mL 烧杯中,加入 0.3 mL 阴离子交 换树脂,用磁力搅拌器搅拌 20 min,静置 5 min,弃上层清夜, 用胶头滴管将树脂移入比色皿中,静置 2 min,以试剂空白为 参比,于 595 nm 处测定吸光度。

2 结果与分析

2.1 吸收光谱 按照试验方法,分别测定 Hg(II) - SCN - 结晶紫三元络合体系在阴离子树脂相和溶液相中的吸收光 谱,结果见图 1。由图 1 可知,Hg(II) - SCN - 结晶紫形成三 元络合物,在树脂相及溶液相中最大吸收波长均为 595 nm, 且树脂相较溶液相中的灵敏度明显提高。故试验选择 595 nm作为测定波长。

2.2 离子交换树脂的选择及用量对树脂相吸光度的影响 在离子交换树脂相光度法中,树脂不仅是交换吸附剂,还是测定时的载体。其粒度的大小及用量的多少决定了树脂的透光性、线性范围及吸附速度等因素。树脂粒度大,透光性好,线性范围宽,但是吸附速度较慢;粒度小,吸附表面积大,吸附时间短,但透光性变差、沉降慢,线性范围窄。同样,树脂用量越大,吸附时间越短,线性范围宽,灵敏度低;树脂用量越小,吸附时间越长,吸附率高,线性范围窄,灵敏度高。树脂相光度法中要求树脂交换速度快、本底值低,透光性好^[10]。综合各因素,笔者选用了 201 × 4、201 × 7、D201 × 4、D301、Dowex1 × 2 阴离子交换树脂进行试验,结果

作者简介 沈淑君(1981—),女,福建诏安人,讲师,硕士,从事分析化 学研究。 收稿日期 2017-03-31

注::I.Hg(II) - 溶液相;II.Hg(II) - 树脂相 Note:I.Hg(II) - solution;II.Hg(II) - resin phase 图1 吸收光谱 Fig.1 Absorption Spectra

2.3 酸度的选择 溶液酸度对 Hg(II) - SCN - 结晶紫三元 络合物的形成及树脂的交换有很大影响,笔者分别研究了磷酸、硝酸、盐酸、HAc - NaAc 缓冲溶液对树脂相吸光度的影响,结果表明,HAc - NaAc 缓冲溶液中树脂相吸光度最大。同时研究了 pH 为 3.0~7.0 的 HAc - NaAc 缓冲溶液对体系 吸光度的影响,结果表明,在 pH 4.5 的 HAc - NaAc 缓冲溶液中体系灵敏度最高且稳定。因此,选择 pH 4.5 的 HAc - NaAc 缓冲溶液作为体系的酸度介质。并考察 HAc - NaAc 用量对吸光度的影响,结果见图 2。由图 2 可见,HAc - NaAc 用量为 2.0 mL 时,体系吸光度最大,因此,选择 pH 为 4.5 的 HAc - NaAc 缓冲溶液的用量为 2.0 mL。

图 2 酸用量对树脂相吸光度的影响

Fig. 2 Effect of amount of HAc-NaAc on resin phase absorbance

2.4 显色剂用量对树脂相吸光度的影响 按试验方法,考察了显色剂结晶紫1.0~6.0 mL 用量对树脂相吸光度的影响,结果见图3。由图3可知,当其用量为1.0 mL 时,树脂相吸光度很小,当用量增加时,吸光度不断增大,当用量达到3.0 mL 时,吸光度最大且恒定,因此,显色剂结晶紫用量为3.0 mL。

2.5 硫氰酸钠用量对树脂相吸光度的影响 按试验方法, 考察了硫氰酸钠 1.0~3.5 mL 用量对树脂相吸光度的影响, 结果见图 4。由图 4 可见,硫氰酸钠用量对体系吸光度的影 响比较大,当其用量为 2.0 mL 时,树脂相吸光度达最大,因

图3 显色剂用量对树脂相吸光度的影响

此,选择硫氰酸钠用量为2.0 mL。

图4 硫氰酸钠用量对树脂相吸光度的影响

Fig. 4 Effect of amount of sodium thiocyanate on resin phase absorbance

2.6 搅拌时间对树脂相吸光度的影响及稳定性 按试验方法,考察了搅拌时间对树脂相吸光度的影响,结果见图5。由图5可知,体系的吸光度随着搅拌时间的延长而增大,当搅拌时间为15~30 min 时,吸光度保持稳定,这说明搅拌时间达到15 min 以上,Hg(II) - SCN - 结晶紫三元络合物在树脂相的吸附达到饱和,因此选择搅拌时间为20 min。

2.7 工作曲线的绘制 取不同含量的标准溶液,在最佳试验条件下绘制工作曲线,结果见图6。由图6可知,Hg(II)含量在0.001~0.100 μg/mL符合朗伯-比耳定律,线性回归方程为A=7.319 6ρ_{Hg(II)} +0.003 5,斜率(k)=7.319 6,相关系数(r)=0.999 6,摩尔吸光系数(ε)=1.46×10⁶ L/(mol·cm),说明通过树脂相的富集,方法的灵敏度大大提高。11 次空白试

验表明,标准偏差(σ) = 1.12×10⁻³。根据(c) = 3 σ/k ,得检 出限(c) = 4.59×10⁻¹⁰ g/mL_o

图 6 不同含量标准溶液的工作曲线

2.8 干扰离子 在试验条件下,对多种常见离子进行干扰 试验,当允许的相对误差≤±5%,测定3.0 µg/50 mL Hg(II) 时,下列共存离子(倍数)不干扰测定:Na⁺、K⁺、Mg²⁺、Zn²⁺、 NH₄⁺、Br⁻、NO₃⁻(3 000); Al³⁺、Ca²⁺、Cl⁻、CO₃²⁻、SO₄²⁻ (1 500); Cd²⁺、Mn²⁺、PO₄³⁻(800); Ba²⁺、Cu²⁺、Cr³⁺(500); Co²⁺、Ni³⁺(200); Fe³⁺、Pb²⁺(50); Sr²⁺、Ag⁺(20)。说明该方 法选择性较好,多数离子不干扰测定。

2.9 样品

2.9.1 水样。取适量的工业废水、河水、池塘水水样,静置, 用玻璃砂漏斗过滤除去水中悬浮物质,调至 pH 近中性,移取 2.0 mL 水样于 50 mL 容量瓶中,水样中 Hg(II)的含量,结果 见表1。由表1 可知,该方法适用于水样中 Hg(II)的测定分 析,废水、河水、池塘水中 Hg(II)的回收率达 99.8% ~ 101.1%。

表1 水样中 Hg(II)的分析结果

Table 1 Determination results of $Mercury(II)$ in water sa	mples
--	-------

	加标前 Before adding standard		汞量加入	加标后 After adding standard		回收率
样品	测定值	相对标准偏差	Added amount	测定值	相对标准偏差	Recovery
Sample	Measured value	Relative standard	of mercury	Measured value	Relative standard	rate
	μg∕ mL	deviation(RSD)//%	μg∕ mL	µg∕ mL	deviation(RSD)//%	%
废水 Waste water	1.210	1.5	0.1	1.308	1.8	99.8
河水 River water	0.086	1.8	0.1	0.188	2.1	101.1
池塘水 Pond water	0.106	2.0	0.1	0.205	1.9	99.5

2.9.2 土样。准确称取 2.0 g 土壤样品放入聚四氟乙烯坩 埚中,用少量水湿润,加浓硝酸 5.00 mL,盖上盖子,加热至 沸,使体系在微沸状态下保持 20 min,取下,冷却处理。加 入 3 mL 氢氟酸,煮沸 10 min,冷却。加入 3 mL 高氯酸,蒸 发至近干再加 1.5 mL 高氯酸,蒸发至近干(残渣为灰白 色),冷却,最后加入 6 mol/L 盐酸溶液 4.00 mL 以及少量蒸 馏水。稍加热,使残渣溶解,将其转入50 mL 容量瓶中,使 用 2 次蒸馏水定容后摇匀。同时按上述方法制备空白溶 液。取 10.00 mL 上清液于50 mL 容量瓶中,同时进行回收 试验,结果见表 2。由表 2 可知,该方法适用于土壤样品中 Hg(Ⅱ)的测定分析,3 个土样中 Hg(Ⅱ)的回收率达 99.9%~100.2%。

表 2 土壤中 Hg(II)的分析结果 Table 2 Determination results of Mercury(II) in soil samples

	加标前 Before adding standard		汞量加入	加标后 After adding standard		回收率
样品	测定值	相对标准偏差	Added amount	测定值	相对标准偏差	Recovery
Sample	Measured value	Relative standard	of mercury	Measured value	Relative standard	rate
	µg∕ mL	deviation(RSD)//%	µg∕ mL	µg∕ mL	deviation(RSD)//%	%
土壤 1 Soil 1	0.618	1.6	1.0	1.615	1.9	99.9
土壤 2 Soil 2	0.586	2.0	1.0	1.588	1.8	100.1
土壤 3 Soil 3	0.735	2.1	1.0	1.738	2.0	100.2

3 结论

该试验研究了 Hg(II) - SCN - 结晶紫三元络合物为显 色剂的树脂相分光光度法测定环境样品中痕量 Hg(II)的新 方法,被测离子在树脂相中可直接富集、测定,简化了操作步 骤,方法的灵敏度高,选择性好,可用于环境水样及土壤样品 中痕量汞的检测。

参考文献

- [1] 吕明, 孙烈刚. Hg(II) SCN⁻ 甲基紫三元络合物光度法测定牛奶中 痕量的汞[J]. 化学分析计量, 2003, 12(3): 23 - 24.
- [2] 吕睿.程序控温-王水消解-原子荧光法测定土壤总汞[J].上海环境 科学,2016,35(2):87-91.
- [3] KAN M, WILLIE S N, SCRIVER C, et al. Determination of total mercury in biological samples using flow injection CVAAS following tissue solubilization in formic acid[J]. Talanta, 2006,68(4):1259 – 1263.
- [4] GENG W, NAKAJIMA T, TAKANASHI H, et al. Determination of mercury

in ash and soil samples by oxygen flask combustion method-cold vapor atomic fluorescence spectrometry(CVAFS)[J]. Journal of hazardous materials, 2008, 154(1/2/3); 325 - 330.

- [5]王文革,赵书林,李舒婷.1-偶氮苯-3-(6-甲氧基-2-苯并噻唑) -三氮烯的合成及用于汞的光度测定[J].理化检验一化学分册, 2006,42(2):100-102.
- [6]赵立杰,汪建新,赵桦萍.β环糊精交联聚合物树脂相分光光度法测定 钢中镍[J].冶金分析,2008,28(3):46-48.
- [7]陈松涛,阎永胜,孙庆龙,等.三元配合物薄层树脂相光度法测定天然水中痕量钻的研究[J].分析试验室,2007,26(2):14-16.
- [8] YATSENKO S P, PYAGAI I N. Red mud pulp carbonization with scandium extraction during alumina production [J]. Theoretical foundations of chemical engineering, 2010,44(4):563-568.
- [9] 彭兰,黄维红,鄢丽华,等. 树脂相分光光度法测定水中微量铁[J]. 化 学分析计量,2011,20(6):80-82.
- [10] 林筑,孔凡军,郑美娟,等.离子交换树脂分离-分光光度法测定赤泥 中钪[J].冶金分析,2016,36(8):73-77.