喀斯特流域岩性对地表径流形态的影响——以花溪河流域为例

夏子翔,赵海兵,胡洪丽 (贵州师范大学地理与环境科学学院,贵州贵阳 550001)

摘要为了解喀斯特地区地层岩性对地表径流形态产生的影响,以花溪河流域为例,探讨研究提取出的实际河流、理论河流与花溪河流 域岩性,从而对比得出喀斯特地区岩性对地表径流形态产生的影响。结果表明,实际的地表径流比提取的理论径流长度要短,造成这种 数据差异的原因是喀斯特地区典型的岩溶作用与溶洞、地下河的共同作用使地表径流流失进入地下,且不同岩性下对地表径流形态产 生的影响不同。

关键词 喀斯特流域;地质岩性;水文分析;数字化;地表径流对比 中图分类号 P931.5 文献标识码 A 文章编号 0517-6611(2017)03-0052-03

The Influence of Lithology on Surface Runoff in Karst River Basin—Taking Huaxi River Basin as an Example XIA Zi-xiang, ZHAO Hai-bin, HU Hong-li (School of Geography and Environmental Science, Guizhou Normal University, Guiyang, Guizhou 550001)

Abstract In order to know the impacts of stratum lithologies in Karst area on the surface runoff pattern, this paper takes Huaxi River basin as an example to explore and discuss the extracted actual river, theoretical river and lithologies of Huaxi River basin, thus to obtain the impacts of stratum lithologies in Karst area on the surface runoff pattern. The result shows that the actual surface runoff is shorter than the extracted theoretical runoff. The reason for this kind of data difference is that the typical karstification in Karst area as well as the combined action of Karst caves and subterranean rivers make surface runoff wash away into underground, and different lithologies exert different impacts on surface runoff patterns. **Key words** Karst river basin; Geological lithology; Hydrological analysis; Digitization; Overland runoff comparison

喀斯特流域可溶性的双重含水介质以及地表地下二元 流场所组成的独特水文地貌结构及其产生的功能效应,使得 其水系发育,水文动态与非喀斯特流域表现出巨大差 异^[1-2]。数字高程模型是重要的国家基础地理信息数据,基 于 ArcGIS 数字地形分析的理论、方法与应用,是当今地理 学、地貌学界特别是地理信息科学研究的热点^[3]。目前,国 内学术界对喀斯特水文的研究成果主要集中在喀斯特地区 水资源承载力^[4]、植被生态水文效应^[5]、枯落物的持水能 力^[6]、水土流失^[7]等方面。然而,关于喀斯特地区地层岩性 对地表径流影响的研究却鲜见报道。笔者选择贵阳花溪区 喀斯特地区作为研究区域,研究了喀斯特地区岩性对地表径 流形态的影响。

1 资料与方法

1.1 研究区概况 花溪河流域位于贵州省贵阳市花溪区, 地处贵阳市南郊,东邻黔南州龙里县,西接贵安新区,南连黔 南州惠水县、长顺县,北与南明区、观山湖区接壤,为长江流 域与珠江流域的分水岭区域。包括溪北社区、清溪社区、贵 筑社区、石板镇、党武乡、燕楼乡、马场镇、马山乡、巢湖乡、红 枫湖镇、麦坪乡,流域面积为359.8 km²。主要地貌类型为峰 丛和岩溶坡立谷,有小部分岩溶平原,具典型的喀斯特溶蚀 地貌特征,以灰岩为主,并分布有白云岩、钙质泥质砂岩和生 物屑灰岩互层等。区内有河流51条,总长390 km,水资源总 量丰富;花溪水库、鹅掌水库等是贵阳市重要的水源保护区; 区内有大量人工沟渠等引水工程。

1.2 数据来源与预处理 遥感数据为 ALOS 卫星 10 M 空间 分辨率数据,遥感影像经过几何精校正、图像镶嵌与色彩匹 配等处理^[8];理论河流数据由贵阳市 ASTERGDEM 30 m 分

作者简介 夏子翔(1994—),男,贵州贵阳人,本科生,专业:地理信息 系统。 收稿日期 2017-01-11 辨率 DEM 数据提取;实际河流数据从贵州省 1:5万水文地质 图并结合遥感影像中提取;地层岩性数据来源于贵州省 1:5 万水文地质图。所有数据统一定义为 Albers Conical Equal Area 投影,从而保证数据的叠加、对比分析。同时对花溪河 流域进行实地调查,结合遥感影像图、水文地质图与野外验 证综合分析判断提取实际河流。

1.3 研究方法 以花溪河流域 DEM 数据和1:5万水文地质 图数据为基础,通过数字化和水文分析提取实际河流和理论 河流,采用对比研究的方法,根据喀斯特地区地表岩性的特 点,分析理论河流与实际河流产生差异的原因。

1.3.1 实际河流长度的提取。利用 ArcGIS 软件将地质图中的河流、湖泊、地质线进行空间数字化,包括 shp 格式文件的建立、投影的建立、实际河流、水库、泉眼的数字化;利用 ArcGIS 软件计算实际河流的长度,来获得花溪区流域的实际 河流及其基本属性。

1.3.2 理论河流长度的提取。利用 ArcGIS 软件中的水文 分析模块提取地表水流径流模型的水流方向、洼地深度、汇 流累积量、河流长度、河流网络(河流网络的分级等)及对研 究区的流域进行分割等^[9-12]。通过上述基本水文因子的提 取与基本水文分析,提取出研究区域的理论河流^[13-14],在通 过 ArcGIS 软件计算出理论河流的长度,最终完成水文分析, 得到花溪区的理论河流数据及其基本属性(图1)。

1.3.3 地质岩性的提取。利用 ArcGIS 软件将水文地质图 进行地层岩性的数字化,并且编辑不同岩层的面积、属性字 段,以获得花溪河流域的地质岩性图。

2 结果与分析

2.1 实际河流状况 研究区实际河流长 376 926 m;整个流 域河流方向为东北方向;有花溪水库、松柏山水库、凯掌水 库、汪官水库、狗洞水库;有泉点 90 余个(图2)。

2.2 理论河流状况 研究区理论河流有 476 669 m;整个流

图1 ArcGIS 水文分析流程

Fig. 1 Flow chart of ArcGIS hydrological analysis

域河流方向东北方向;无法判断出水库与泉眼(图3)。

2.3 实际河流与理论河流的对比

2.3.1 形态。从图 2、3 可以看出,理论河流与实际河流的 形态存在明显差异,从形态上来看,理论河流比实际存在的 河流多;理论河流有很多较小的支流,实际河流中没有较多 支流,但有明显的水库湖泊。

图2 研究流域实际河流

2.3.2 岩性分区。

(1)岩性分布。研究流域大部分属于喀斯特地区,河流的分布在各种岩组区别很大,见图4、5。由表1可知,研究区的地质结构是由岩性为安顺组、大冶组、花溪组、下三叠、长兴组、吴家坪组、贵阳组、自流井、茅口组、青龙组、三桥组+ 二桥组构成,研究区的岩性主要为白云岩、灰岩为主,其中白云岩、灰岩皆为可溶性岩石^[15-16]。

(2)不同地层岩性的河流。总体来说,研究流域内河流 主要流经安顺组、大冶组、花溪组、下三叠组。其中,茅口组、

图3 研究流域理论河流

图 4 研究流域理论河流岩性分布 Fig. 4 Lithologic distribution of theoretical river

青龙组、三桥组 + 二桥组无河流流过;研究流域内自然河流 比理论河流长,总共长 99 743 m。具体比较情况如下:安顺 组理论河流比实际河流长51 745 m;大冶组理论河流比实际 河流长 44 221 m;花溪组理论河流比实际河流短 14 990 m;下 三叠组理论河流比实际河流长 33 120 m;长兴组理论河流比 实际河流长 1 804 m;贵阳组理论河流比实际河流短 3 633 m; 自流井组理论河流比实际河流短 7 629 m(表 2)。茅口组、青 龙组、三桥组 + 二桥组无河流。

m

图 5 研究流域实际河流岩性分布 Fig. 5 Lithologic distribution of actual river

表1 研究流域组别岩性信息

Table 1 Lithologic information of watershed groups

组名	面积	代号	岩性简述
Group	Area // m²	Code	Lithologic description
安顺组 Anshun group	154 774 975	T1 a	白云岩、角砾白云岩
大冶组 Daye group	112 431 969	T1d	薄层泥晶灰岩
花溪组 Huaxi group	50 269 618	T2h	泥质灰岩、白云岩、白 云质灰岩
下三叠 Xiasandie	926 571	T1 d	哥里斯巴赫阶:15 m 厚的生物层
长兴组 Changxing group	19 916 758	P2c	含蜓灰岩相当的大隆 组为页岩和燧石灰岩 互层
吴家坪组 Wujiaping group	17 117 660	P2w	灰岩夹页岩、炭质页 岩夹煤
贵阳组 Guiyang group	1 672 186	T2gy	白云岩夹泥质白云岩
自流井 Artesian well	1 530 904	Jzl	杂色砂页岩夹灰岩
茅口组 Maokou group	750 745	P1m	灰岩
青龙组 Qinglong group	382 599	T1q	灰岩
三桥组 + 二桥组 Sanqiao group + Erqiao group	55 763	T3s-T3e	钙质泥质砂岩与生物 屑灰岩互层
合计 Total	359 829 748		

3 结论与讨论

(1)实际河流和提取的理论河流之所以存在差异,主要 是因为研究流域具有喀斯特地区的岩溶作用与溶洞、地下河 等,使得研究流域的支流河流水流失严重,这种流失导致水 流无法进行有效的汇集形成河流;而提取理论河流并未考虑 喀斯特地区的岩溶作用,无上述流失情况。这就导致了理论 提取的河流比实际提取的河流长,进一步发现喀斯特地区地 质岩性的差异会导致地表实际河流与理论河流的差异。

(2) 通过对不同岩性区域理论河流和实际河流的对比分 析,发现两者主要在河流形态、长度、数量上存在明显差异,

表 2	研究流域组别内理论河流与实际河流信息统计

Table 2 Statistics of theoretical rivers and actual rivers in watershed groups

组名 Group	理论河流长度 Theoretical river length	实际河流长度 Actual river length
安顺组 Anshun group	178 792	127 047
大冶组 Daye group	153 675	109 454
花溪组 Huaxi group	67 978	82 968
下三叠 Xiasandie	35 474	2 354
长兴组 Changxing group	19 793	17 989
吴家坪组 Wujiaping group	18 964	22 597
贵阳组 Guiyang group	1 993	6 888
自流井 Artesian well	0	7 629
茅口组 Maokou group	0	0
青龙组 Qinglong group	0	0
三桥组 + 二桥组 Sanqiao group + Erqiao group	0	0
合计 Total	476 669	376 926

自然河流无论从数量上还是长度上都比理论河流数量少。 从长度上看,依次为安顺组、大冶组、花溪组、三下叠、长兴 组、吴家坪组、贵阳组、自流井、茅口组、青龙组、三桥组+二 桥组;从形态上看,三桥组、二桥组无地表河流,安顺组、大冶 组河流减少严重。

(3)喀斯特地区的地质岩性会导致实际河流与理论河流 的差异,使得在进行喀斯特地区水文分析时需考虑地层岩性 对河流的影响。然而由于区位、降雨量、人工开发的差异,使 得喀斯特地区实际河流与理论河流的差异可能还存在一些 其他情况,这有待进一步研究。

参考文献

- [1] 杨明德,谭明,梁虹.喀斯特流域水文地貌系统[M].北京:地质出版社, 1998.
- [2] 汤国安. 我国数字高程模型与数字地形分析研究进展[M]. 北京:地理 学报,2014,69(9):1305-1325.
- [3] 周亮广,梁虹.喀斯特地区相对水资源承载力研究:以贵州省为例[J]. 资源科学,2006,28(2):22-27.
- [4] 张志才,陈喜,石朋,等. 喀斯特流域分布式水文模型及植被生态水文 效应[J].科学进展,2009,20(6):806-811.
- [5] 刘玉国,刘长成,李国庆,等.贵州喀斯特山地5种森林群落的枯落物储 量及水文作用[J]. 林业科学, 2011, 47(3):82-88.
- [6]梁虹.喀斯特流域空间尺度对洪、枯水水文特征值影响初探----以贵 州河流为例[J]. 中国岩溶,1997,16(2):121-129.
- [7] 詹奉丽,兰安军,刘发勇,等.中国南方典型喀斯特区石漠化与水土流 失的空间耦合性:以关岭县为例[J].贵州农业科学,2015,43(10):200 -204.
- [8] 张朝忙,刘庆生,刘高焕,等. SRTM3 与 ASTER GDEM 数据处理及应用 进展[J]. 地理与地理信息科学,2012(5):33-38.
- [9] 王璐,张俊平,王长委,等. 基于 ArcGIS 的地形图数字化与三维再现 [J]. 广东农业科学,2009 (8):205-252.
- [10] 范艳芳,王霓虹,周洪泽.基于专题图的 GIS 空间数据获取方法的研 究[J].林业勘察设计,2004,132(4):72-74.
- [11] 李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001.
- [12] 孙庆艳,余新晓,胡淑萍,等. 基于 AreGIS 环境下 DEM 流域特征提取 及应用[J].北京林业大学学报,2008,30(S2):144-147.
- [13] 李丽,郝振纯. 基于 DEM 的流域特征提取综述[J]. 地球科学进展, 2003,18(2):251-256.
- [14] 李翀,杨大文.基于栅格数字高程模型 DEM 的河网提取及实现[J]. 北京:中国水利水电科学研究院学报,2004,2(3):208 - 214.
- [15] 孙艳玲,刘洪斌,谢德体,等. 基于 DEM 流域河网水系的提取研究 [J].资源调查与环境,2004,25(1):18-22.
- [16] 胡锋,安裕伦,许璟."亚喀斯特"概念与景观特征的初步探讨:以贵州 为例[J]. 地理研究, 2015, 34(8): 1569-1580.