费乌瑞它马铃薯脱毒技术研究

郭耀东,温日宇,姜庆国 (山西省农业科学院玉米研究所,山西忻州 034000)

摘要 [目的]解决费乌瑞它马铃薯种薯退化问题。[方法]利用植物茎尖脱毒培养技术对费乌瑞它马铃薯进行脱毒。[结果]芽外植体灭菌方式以5% NaClO 3 min + 0.1% HgCl₂ 灭菌 7 min + 70% 乙醇 0.5 min 组合效果最好;芽外植体消毒灭菌后在 MS 基本培养基中培养效果最好;6-BA、NAA 对芽外植体的诱导和分化有促进作用,最佳诱导培养基为 MS +6-BA 0.5 mg/L + NAA 0.3 mg/L,此时芽分化成苗率最高。[结论]该研究可为费乌瑞它马铃薯种薯生产提供理论依据。

关键词 费乌瑞它马铃薯;茎尖;脱毒

中图分类号 S532 文献标识码 A 文章编号 0517-6611(2017)33-0049-03

Study on Virus-free Technology of Favorita Potato

GUO Yao-dong, WEN Ri-yu, JIANG Qing-guo (Maize Research Institute, Shanxi Academy of Agricultural Sciences, Xinzhou, Shanxi 034000)

Abstract [Objective] To solve the problem of Favorita potato degradation. [Method] Detoxification of Favorita potato was studied by using plant stem tip virus-free culture technique. [Result] The combination of 5% NaClO 3 min + 0.1% HgCl₂ 7 min + 70% CH₃CH₂OH 0.5 min was suitable to sterile the buds of potato. After sterilizing the tuber and bud explants of potato, the best culture medium was MS. 6-BA and NAA could promote the buds induction and differentiation. The optimal induction medium was MS + 6-BA 0.5 mg/L + NAA 0.3 mg/L, at this point, the seedling rate was the highest. [Conclusion] This study provides a theoretical basis for Favorita potato production.

Key words Favorita potato; Stem tip; Virus-free

马铃薯(Solanum tuberosum)是茄科茄属一年生草本植物,在生产上,马铃薯绝大多数是利用块茎进行无性繁殖^[1]。它与水稻、小麦和玉米并称为四大粮食作物,广泛分布于世界上130多个国家和地区。根据国际粮农组织预计:21世纪,随着耕地面积的不断减少和人口的迅速增长,马铃薯以其营养价值高、产量大的优势,将在农业生产中占据越来越重要的地位^[2]。马铃薯属于无性繁殖作物,在生长期间由于病毒侵染会出现退化现象,而且这些病毒一旦侵入马铃薯植株或块茎,就会表现出多种退化类型,例如束顶型、花叶型和卷叶型。有的表现为叶片卷曲坏死,有的表现为叶片失绿,有的表现为块茎变小、变尖,严重者失去发芽能力,不能作种。马铃薯被病害侵染后,一般减产15%~25%,严重者减产75%以上,而且病情逐年加重,最后失去利用价值^[3-4]。

山西省忻州市五寨县是马铃薯的适生区,有着巨大的马铃薯增产潜力,种薯和商品薯外销市场较广,同时,在产业结构调整过程中,推动马铃薯产业尽快发展,使马铃薯成为贫困地区种植业的一项重要内容。运用现代生物技术,建立、健全马铃薯生产体系,解决马铃薯品种退化,完善马铃薯脱毒繁育技术并将其推广应用于生产,是马铃薯产业可持续发展的关键。

费乌瑞它马铃薯为早熟鲜食优良马铃薯品种,自荷兰引进,生育期65 d左右,块茎长椭圆形,表皮淡黄色、光滑,肉鲜黄色,块茎大而整齐,结薯集中,芽眼少而浅,块茎对光敏感。鲜薯淀粉含量12%~14%,干物质含量18%,粗蛋白含量1.6%,还原糖含量0.5%,维生素C含量136 mg/kg^[5],是一种优良的马铃薯品种。目前费乌瑞它马铃薯已经成为五寨地区鲜食马铃薯主栽品种之一,在常年栽培过程中出现严重

的病毒侵染现象,退化严重,该试验用生物技术手段对费乌瑞它马铃薯进行脱毒技术研究,筛选最佳的外植体灭菌方法,最佳的芽苗分化培养基,为费乌瑞它马铃薯脱毒种薯的快速生产与良种快速繁殖奠定基础。

1 材料与方法

1.1 材料 供试材料为费乌瑞它马铃薯块茎,由山西省农业科学院五寨试验站提供,试验于2017年3月在山西省农业科学院玉米研究所分子育种实验室实施。

1.2 方法

- 1.2.1 材料准备和催芽处理。
- (1)选择表皮光滑、正常薯形、大小均匀、无病虫害和机械损伤的马铃薯作为脱毒材料。
- (2)洗净种薯,用 $0.05 \sim 0.10 \text{ mg/L}$ 的 GA_3 溶液浸泡 0.5 h,以打破马铃薯休眠^[6]。
- (3)将用 GA₃ 溶液处理过的薯块放入喷水的瓷盘上,用塑料膜保湿,温度保持在(22 ± 2)℃,对马铃薯进行催芽处理,待芽体长到 2~3 cm 时,剥下芽体待用。
- **1.2.2** 茎尖消毒剥离技术。以 MS 为基本培养基,具体操作如下:
- (1)将发芽的费乌瑞它薯块的外面几层叶片剥除,放置 在烧杯中,用纱布封住瓶口,在自来水下冲洗约1h。
- (2)取出后放在超净工作台内,无菌条件下将芽体浸泡在 70% 乙醇中 30 s。
- (3)用 HgCl₂ 和 NaClO 进行表面消毒,0.1% HgCl₂ 消毒时间为 7 min,再分别放在浓度为 5% NaClO 溶液中 1 ~ 5 min,最后放入蒸馏水中反复冲洗,将其放在无菌滤纸上吸干水分,于 40 倍解剖镜下进行茎尖分生组织剥离。
- (4)用解剖针小心除去茎尖周围的层层叶片,在解剖镜 下用解剖刀剥去带一个叶原基的茎尖(0.2~0.4 mm)。
 - (5)迅速按无菌操作接人之前灭菌过的马铃薯茎尖培养

作者简介 郭耀东(1965-),男,山西忻州人,副研究员,从事作物栽培研究。

收稿日期 2017-08-09

基上,做好标记,置于培养室内进行光照培养。

1.2.3 茎尖培养。马铃薯茎尖分生组织培养,共设计5个处理,分别在 KM8P、White、N6、B5、MS 培养基上进行培养,适宜温度为(22±2)℃,光照时间为15 h,第1~7 天适宜光照强度为2000~2500 lx,第7 天后光照强度为3000~5000 lx,培养15~20 d时生长点开始变绿,伸长,叶原基形成可见小叶,经过60 d左右的诱导培养,中间转接到普通培养基上1~2次,即可长成3~4片叶的小植株^[7-9]。将芽段(1~2 cm)接种到诱导培养基上,每瓶接种3~4个。

1.2.4 快繁技术。试验以 MS 为基本培养基,主要研究单因子激素 6-BA、NAA 对费乌瑞它马铃薯苗继代增殖的影响,每个试验设计 5 个处理。6-BA 浓度分别为 0.1、0.5、1.0、1.5、2.0 mg/L,NAA 浓度分别为 0.1、0.3、0.5、0.7、1.0 mg/L,经过病毒检测合格的脱毒瓶苗,当马铃薯脱毒试管苗长至 6~8 cm 时,在超净工作台上将其切断后转接于扩繁培养基上,再放回培养室培养。扩繁培养基为 MS+NAA 0.1 mg/L,pH 5.8~6.0。

培养的最适温度为 23 ~ 24 °C, 光照强度 1 500 ~ 2 000 lx,每天光照时间 16 $h^{[10-11]}$ 。

2 结果与分析

2.1 不同灭菌剂组合对费乌瑞它马铃薯芽外植体灭菌效果的影响 由表 1 可知,外植体灭菌以 5% NaClO 灭菌 3 min 与 0.1% 的 HgCl₂ 灭菌 7 min 效果最好。但是随着 NaClO 灭菌 时间的延长,死亡率也开始上升。因此,掌握好灭菌溶液种类和浓度、灭菌时间,能提高外植体的灭菌效果。

表 1 不同灭菌剂组合对费乌瑞它马铃薯芽外植体灭菌效果的影响
Table 1 Effects of different sterilant combinations on the explants sterilization of Favorita potato bud

NaClO 处理时间	污染率	死亡率	平均出芽数 Average	出芽率	芽长
NaClO	Contamination rate //%	Mortality	budding number	Budding rate	Bud length
processing time//min	rate// %	rate// %	个	%	cm
1	5.34	0	1.91	91.24	4.03
2	4.26	4.39	1.82	90.40	4.19
3	3.09	0	2.51	100	4.09
4	6.16	4.66	2.13	93.80	4.26
5	7.25	4.26	1.89	88.90	3.67

2.2 不同基本培养基对费乌瑞它马铃薯芽外植体诱导产生的影响 由表 2 可知,在供试培养基中,MS 基本培养基对费乌瑞它马铃薯芽外植体的诱导效果最好。

表 2 不同基本培养基对费乌瑞它马铃薯芽外植体诱导产生的影响

Table 2 Effects of different basic medium on the induction of explants of Favorita potato bud

培养基	接种芽数 Inoculated bud	诱导出芽数 Induced budding	芽分化成苗率 Bud differentiation into	茎粗 Stem diameter	苗高 Seedling height	生根率 Rotting rate	苗素质 Seedling
Medium	number//∕	number//个	seedling rate // %	mm	cm	%	quality
KM8P	34	15	48.4	3.6	4.68	52.4	茎一般
White	25	12	43.0	3.2	4.96	48.2	长势一般
N6	28	14	44.3	2.6	4.02	48.8	少数枯死
B5	41	23	53.2	3.3	4.21	52.9	茎一般
MS	31	18	62. 2	3.8	5.34	62.2	茎尖绿色

2.3 不同浓度 6 - BA、NAA 对费乌瑞它马铃薯苗继代培养的影响 从表 3、4 可以看出,不同浓度 6 - BA、NAA 对费乌瑞它马铃薯试管苗增殖倍数的影响不同。在费乌瑞它马铃

薯试管苗继代培养的过程中,苗增殖倍数普遍在6-BA浓度为0.5 mg/L、NAA浓度为0.3 mg/L 时最高。

表 3 不同浓度 6 - BA 对费乌瑞它马铃薯苗继代培养效果的影响

Table 3 Effects of different 6 - BA concentration on plantlets subculture of Favorita potato

6 - BA 浓度	接种苗数	增殖苗数	增殖倍数	茎粗	苗高	节间距	苗素质
6 - BA concen-	Inoculated seedling	Proliferous seedling	Proliferation	Stem diameter	Seedling height	Internodal distances	Seedling
tration//mg/L	number	number	times	mm	cm	mm	quality
0.1	35	83	2.37	1.36	6.39	12.4	植株较细
0.5	41	129	3.15	1.85	6.16	12.8	植株粗
1.0	49	112	2.28	1.63	6.52	15.2	植株一般
1.5	40	103	2.57	1.56	6.52	13.2	植株一般
2.0	54	136	2.52	1.42	7.02	14.6	植株细

表 4 不同浓度 NAA 对费乌瑞它马铃薯苗继代培养效果的影响

Table 4 Effects of different NAA concentration on plantlets subculture of Favorita potato

NAA 浓度	接种苗数	增殖苗数	增殖倍数	茎粗	苗高	节间距	苗素质
NAA concentration	Inoculated seedling	Proliferous seedling	Proliferation	Stem diameter	Seedling height	Internodal distances	Seedling
mg/L	number	number	times	mm	cm	mm	quality
0.1	55	106	1.92	1.72	6.83	17.2	植株一般
0.3	62	146	2.35	1.92	7.21	18.3	植株粗
0.5	46	89	1.93	1.86	7.12	19.3	植株粗
0.7	46	103	2.23	1.75	6.10	16.2	植株一般
1.0	53	116	2.19	1.52	6.05	15.6	植株细

3 讨论与结论

不稳定、品种比较单一、更新速度慢,导致在马铃薯栽培过程 质量 中出现植株逐年变小、叶色深浅不一、叶片卷曲皱缩、茎秆细

虽然马铃薯种薯市场巨大,自留种、外调种较多,但质量

弱矮小、块茎龟裂变形、产量逐年下降等现象,这是马铃薯"退化"的典型表现。马铃薯退化主要是病毒引起,病毒可以侵入植物体内所有的营养器官,但是除了一些类病毒,大多数病毒都不能侵入到花粉、卵、胚等生殖器官^[12]。大多数植物是通过有性生殖繁育后代,有性生殖繁育后代的新生种胚具有亲体摒除病毒的作用,能除去母体所带的各种病毒,生产的后代是无病毒侵染的种子^[13]。栽培种马铃薯是高度杂合的四倍体,为了保持四倍体马铃薯栽培种的优良农业性状,采取无性繁殖的方式,在长期种植过程中病毒积累,马铃薯退化,从而导致马铃薯严重减产。而采用现代生物技术手段进行马铃薯茎尖脱毒,可以将马铃薯种薯内的病毒去除,恢复马铃薯品种的生理功能和生产特性,从而防止马铃薯"退化"。

在费乌瑞它马铃薯脱毒过程中,脱毒后的芽外植体出现了严重的污染问题,杂菌滋生,采取通风、去湿、光照、防霉、使用抗生素等方法,效果不是很明显,后来从源头上对外植体进行灭菌,芽外植体灭菌效果以 5% NaClO 3 min + 0.1% HgCl₂灭菌 7 min + 70% 乙醇 0.5 min 组合最佳。对于消毒灭菌后芽外植体分别用 KM8P、White、N6、B5、MS 培养基进行筛选,在 MS 基本培养基中培养效果最好。用不同浓度的6-BA、NAA 对芽外植体进行诱导和分化,发现6-BA、NAA都有促进作用,最佳诱导培养基为 MS+6-BA 0.5 mg/L+NAA 0.3 mg/L,此时芽分化成苗率最高。山西省忻州市五寨

县是重要的马铃薯种植基地,采用马铃薯脱毒技术可以解决 费乌瑞它品种退化问题,是提高生产水平至关重要的环节, 该研究可为脱毒费乌瑞它马铃薯良种繁育提供基础资料。

参考文献

- [1] 黑龙江农业科学院马铃薯研究所. 中国马铃薯栽培学[M]. 北京:中国农业出版,1994.
- [2] MUNCIE J H. Yellow dwarf disease of potatoes [J]. Mich Agric Exp Stn Spec Bull, 1935, 260;18.
- [3] SALAZAR L F. 马铃薯病毒及其防治[M]. 阎文昭,张勇飞,等译. 北京:中国农业科技出版社,2001:183-184.
- [4] 胡玉霞. 费乌瑞它马铃薯综合农艺性状及高产栽培技术[J]. 现代农业科技,2016(13):100-101.
- [5] 胡琳. 植物脱毒技术[M]. 北京:中国农业大学出版社,2000.
- [6] MISSIOU A, KALANTIDIS K, BOUTLA A, et al. Generation of transgenic potato plants highly resistant to potato virus Y(PVY) through RNA silencing [J]. Molecular breeding, 2004, 14(2):185-197.
- [7] 田成津. 马铃薯茎尖脱毒及组培快繁技术研究[J]. 农业科技与信息, 2012(16):21-23.
- [8] 董越,张丹,靖凯. 浅谈马铃薯脱毒苗组培快繁技术[J]. 园艺与种苗, 2012(2):17-18,31.
- [9] 杨淑慎. 细胞工程[M]. 北京:科学出版社,2009:146-149.
- [10] 刘小凤. 马铃薯组织培养脱毒和病毒检测研究[D]. 杨凌:西北农林科技大学,2005.
- [11] 穆艳娥,王拴福,姬青云,等. 马铃薯脱毒快繁与微型种薯生产技术 [J]. 种子科技,2012,30(4);35-36.
- [12] BUTKIEWICZ H, DZIEWOŃSKA M A. Selection of first-year potato seedlings for resistance to potato leaf roll virus [J]. Potato research, 1982, 25 (3):265-268.
- [13] 陈伊里,石瑛,王凤义,等. 新型栽培种在中国马铃薯育种中的利用 [M]//陈伊里,屈冬玉. 中国马铃薯研究与产业开发. 哈尔滨:哈尔滨工程大学出版社,2003.

(上接第48页)

[6] 刘家驹,陈家华. 走出新疆葡萄干生产的误区[J]. 新疆农业科学,1999 (5):238-239.

. + ..

- [7] 陈玲,韩琛,肖丽,等.吐鲁番无核白葡萄产业现状与研究趋势[J]. 农产品加工·学刊,2012(3):98-99,110.
- [8] 罗文,刘卫星,陆胜祖. 葡萄促干剂及使用中应注意的问题[J]. 新疆农业科学,1997(3):133-134.
- [9] SHIMADA A, UEGUCHI-TANAKA M, NAKATSU T, et al. Structural basis for gibberellin recognition by its receptor GID1 [J]. Nature, 2008, 456 (7221):520-523.
- [10] 湛进,钟才高,关岚,等.赤霉素对小鼠仔鼠生长发育的影响[J]. 实用预防医学,2005,12(2);226-229.
- [11] EL-MOFTY M M,SAKR S A,RIZK A M,et al. Carcinogenic effect of gibberellin A_3 in Swiss albino mice [J]. Nature cancer, 1994, 21 (2):183 190.
- [12] 邓媛媛,钟才高,关岚,等.赤霉素对大鼠肝细胞线粒体呼吸功能的影响[J]. 卫生研究,2011,391(6):697-700.
- [13] SAKR S, OKDAH A, EL-ABED S. Gibberellin A3 induced histological and histochemical alterations in the liver of albino rats [J]. Science Asia, 2003,29:327 – 331.
- [14] MUTHURAMAN P, SRIKUMAR K. A comparative study on the effect of homobrassinolide and gibberellic acid on lipid peroxidation and antioxidant status in normal and diabetic rats[J]. J Enzyme Inhib Med Chem, 2009,24(5):1122-1127.
- [15] EL-MOFTY M M,SAKR S A. Induction of neoplasms in the Egyptian toad Bufo regulars by gibberellin A₃[J]. Oncology, 1988, 45(1):61-64.
- [16] 何瑞,刘艾平,曹玉广,等. 植物生长调节剂使用中的安全问题[J]. 中国卫生监督杂志,2003,10(2):99-101.
- [17] SABAREZ H, PRICE W E, BACK P J, et al. Modelling the kinetics of drying of d'Agen plums (*Prunus domestica*) [J]. Food chemistry, 1997,60 (3);371 382.
- [18] PRICE W E, SABAREZ H T, STOREY R, et al. Role of the waxy skin layer in moisture loss during dehydration of prunes [J]. Journal of agricultural and food chemistry, 2000, 48(9):4193-4198.
- [19] DOYMAZ I, PALA M. The effects of dipping pretreatments on air-drying rates of the seedless grapes[J]. Journal of food engineering, 2002, 52(4):

- 413 -417.
- [20] PONTING J D, MCBEAN D M. Temperature and dipping treatment effects on drying rates and drying times of grapes, prunes and other waxy fruits [J]. Food technology, 1970, 24:85 – 88.
- [21] DI MATTEO M, CINQUANTA L, GALIERO G, et al. Effect of a novel physical pretreatment process on the drying kinetics of seedless grapes [J]. Journal of food engineering, 2000, 46(2):83 – 89.
- [22] TARHAN S. Selection of chemical and thermal pretreatment combination for plum drying at low and moderate drying air temperatures [J]. Journal of food engineering, 2007, 79(1):255 260.
- [23] 徐晓辉, 亢建志, 袁江玲, 等. 杏、葡萄促干剂的毒性研究及安全性评价 [J]. 地方病通报, 2010, 25(5): 55-57.
- [24] 郑永菊,师俊玲,刘延琳. 吐鲁番葡萄干加工中存在的主要问题[J]. 中外葡萄与葡萄酒,2011(9):62-64.
- [25] PANGAVHANE D R, SAWHNEY R L, SARSAVADIA P N. Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes [J]. Journal of food engineering, 1999, 39(2):211 –216.
- [26] 肖平,罗芬,也玉梅,等. 返滴定法测定天南星药材中总有机酸含量 [J]. 南京中医药大学学报,2011,27(6):575-576.
- [27] ASAHINA M, IWAI H, KIKUCHI A, et al. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls[J]. Plant Physiol, 2002, 129(1); 201 – 210.
- [28] 王蕾,海利力·库尔班,萨拉木·艾尼瓦尔. 野生杏种子对外源赤霉素的生理响应[J]. 干旱区研究,2009,26(5):708-713.
- [29] 黄志强,李璟, 无核白葡萄应用促干剂制干试验[J]. 中国果树,1995 (3):13-14.
- [30] THEOLOGIS A, LATIES G G. Membrane lipid breakdown in relation to the wound-induced and cyanide-resistant respiration in tissue slices [J]. Plant Physiol,1980,66;890 – 896.
- [31] 李亚东,唐雪东,袁菲,等 我国小浆果生产现状、问题和发展趋势[J]. 东北农业大学学报,2011,42(1):1-10.
- [32] 李鹏飞. 食品添加剂——健康的隐形杀手[J]. 商品与质量,2011(3):
- [33] 范京惠,左玉柱,李一经. 细胞凋亡的研究进展[J]. 东北农业大学学报,2005,36(6):804-807.