中国 青凤蝶 3 个 亚种的 遗传 变 异分析

杨斯琦1,王亚楠2,王方方2,何娅1,靳亚丽1 (1.上海科技馆上海自然博物馆自然史研究中心,上海 200041;2.中国农业科学院 上海兽医研究所农业部动物寄生虫学重点实验室,上海 200241)

摘要 「目的]探讨中国青凤蝶(Graphium sarpedon Linnaeus)3个亚种的遗传变异。[方法]对青凤蝶3个亚种的COI基因和EF-1α 基因部分序列进行测定,并对序列的碱基组成、转换颠换数和遗传距离等进行分析。「结果]在测得的 COI基因(709 bp)和 EF-1α (1064 bp)基因中,有44 个变异位点,6 个简约信息位点,CO I 基因 A + T 平均含量为69.3%,存在较强的含量偏向性,亚种间的遗传 距离相差甚小。[结论]青凤蝶3个亚种之间没有明显序列差异,仍然适宜采用传统的基于形态学的青凤蝶亚种分类体系。 关键词 青凤蝶;CO [基因;EF - 1α 基因;遗传变异 中图分类号 Q969.42 文献标识码 文章编号 0517-6611(2017)31-0156-04 A

Analysis of Genetic Variation in Three Subspecies of Graphium sarpedon Linnaeus from China

YANG Si-qi¹, WANG Ya-nan², WANG Fang-fang² et al (1. Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai 200041;2. Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241)

Abstract [Objective] To investigate the genetic variation in three subspecies of Graphium sarpedon Linnaeus in China. [Method] The CO I gene and the $EF-1\alpha$ gene were partially sequenced. The nucleotide composition, the number of transition and transversion, genetic distance of the segment had been analyzed. [Result] There were 44 variation sites and 6 parsimony-informative sites in combined sequence of the CO I gene (709 bp) and $EF-1\alpha(1\ 064\ bp)$ gene in the examined species. The average A + T content of CO I gene was 69.3%, which showed strong A + T bias. But genetic distance among subspecies were very small. [Conclusion] It has no significant sequence differences between the three subspecies, which is still suitable to use the traditional morphological classification system for Graphium sarpedon subspecies. Key words Graphium sarpedon; CO I gene; $EF-1\alpha$ gene; Genetic variation

青凤蝶(Graphium sarpedon Linnaeus),又名樟青凤蝶或 青带凤蝶,属于鳞翅目(Lepidoptera),凤蝶科(Papilionidae), 青凤蝶属(Graphium),分布于我国陕西、湖北、湖南、四川、云 南、贵州、西藏、江西、浙江、福建、广西、广东、海南、台湾、香 港等地区^[1]。青凤蝶在我国有3个亚种,即指名亚种[G. sarpedon sarpedon(Linnaeus)]、蓝斑亚种[G. sarpedon connectens(Fruhstorfer)]、斑带亚种[Graphium sarpedon semifasciatum (Honrath)]。目前对青凤蝶斑带亚种的分类尚存有争议,魏 忠民等^[2]通过对中国青凤蝶标本的观察,归纳出6种中国青 凤蝶的变异型,描述其主要形态特征,认为青凤蝶的斑带亚 种是一种变型,而不是亚种。对于青凤蝶亚种的争议问题, 以 DNA 序列为基础的分辨依据研究较少。

目前国内外学者结合线粒体基因和核基因等分子标记

对昆虫类群的系统学研究已有大量的文献报道。线粒体 DNA 具有结构简单、进化速度快、高拷贝数、易于分离纯化等 特点,是研究系统发育、种群遗传变异和分化、区分近缘种的 重要工具^[3]。由于线粒体基因是母系溃传,其中所含的进化 信息并不能完全反映双亲进化的历史,核基因也含有丰富的 生物学信息,结合适当的核基因将更好地分析蝶类的系统 发育^[4]。

笔者对我国分布的青凤蝶 3 个亚种的 CO I 基因和 EF -1α 基因部分序列进行测定,研究它们在 DNA 序列上的差 异,以期为我国青凤蝶3个亚种分类地位提供分子证据。

1 材料与方法

1.1 材料 青凤蝶3个亚种的标本来自我国广西、上海,包 括作为外群的木兰青凤蝶,共15只成虫标本(表1)。

	Table 1	The sources of	f insect samples				
TT TH	亚佳山	亚焦叶间	长木粉	GenBank 登陆号 GenBank accession No.			
Subspacios	本衆地 Logation	不 采 时回 Collection data	Sample number	C0 [基因	<i>EF</i> – 1α 基因		
Subspecies	Location	Conection date	Sample number	CO I gene	$EF - 1\alpha$ gene		
指名亚种 G. sarpedon sarpedon	广西	2016 - 05	3	GU372548	GU372639		
蓝斑亚种 G. sarpedon connectens	广西、上海	2016 - 07	4	GU372548	GU372639		
斑带亚种 G. sarpedon semifasciatum	广西、上海	2016 - 07	7	GU372548	GU372639		
木兰青凤蝶 G. doson(Felder et Felder)	广西	2016 - 07	1	EU792483.1	AF044815.2		

表1 昆虫样本来源

上海市金山区水务局专项"大金山岛猕猴容量调查研究"; 基金项目 上海科技馆种子资金项目。

杨斯琦(1987-),女,江西丰城人,助理研究员,硕士,从事 作者简介 昆虫分类学及分子生物学研究。

项目实施过程中得到了中国农业科学院上海兽医研究所农 逈 业部动物寄生虫学重点实验室的大力支持,同时也感谢张 云飞、卜云、张厚双老师在数据分析上给予的帮助。

收稿日期 2017-08-28

1.2 方法

1.2.1 提取基因组 DNA 及 PCR 扩增。选取部分腹部或足 部组织作为试验材料,采用试剂盒 insect kit(Omega)提取基 因组 DNA,样品保存在-20 ℃备用。试验采用的引物序列 如下。

CO I 上游引物:5' - GGTCAACAAATCATAAAGATATTG

-3';下游引物:5'-TAAACTTCAGGGTGACCAAAAAAT-3'。 EF-1α上游引物:5'-TCGATATCGCTTTGTGGAAGTT-3'; 下游引物:5'-ACGCACGGCAAAACGACCGAGAG-3'。

PCR 反应体积为 50 μ L,反应体系包括 1.25 U 的 *Taq* DNA 聚合酶, 0.2 mmol/L dNTP,上下游引物分别为 0.4 μ mol/L,10 × PCR Buffer 为 5 μ L,模板 DNA 溶液 2 μ L (50 ~ 100 ng DNA)。扩增条件为95 ℃预变性 3 min;95 ℃变性 30 s,55 ℃复性 30 s,72 ℃延伸 1 min,30 个循环;最后在 72 ℃ 延伸 7 min,4 ℃保温。用 Eppendorf 梯度 PCR 仪进行扩增。

1.2.2 PCR 产物纯化、测序。用 1% 的琼脂糖凝胶电泳检测 PCR 产物,用 DNA 凝胶回收试剂盒,对目的条带进行回收和 纯化后,连接到 T 载体,经过转化挑克隆,提取质粒再委托上 海赛默飞(Thermo Fisher)公司进行双向测序。

1.2.3 序列分析及差异比较。测定 15 只成虫标本的 CO I 和 EF – 1 α 基因部分序列,正反链序列拼接后,再 Blast 进行 序列同源性比较,基于 Kimura – 2 参数,采用 MEGA6.0 软件 进行序列组成分析,如序列碱基组成(nucleotide composition)、保守位点(conservedsjtes)、变异位点(variable sjtes)、简 约信息位点(parsimony information sites)、自裔位点(singletonsites)等。选择 Tamurar Nei 模型,计算各分类单元之间的遗 传距离、转换数与颠换数比值(Ts/Tv)。

2 结果与分析

2.1 基因序列的确定 根据所选引物的位置,COI基因和 EF-1α基因预测扩增的片段分别是 709 bp 和1064 bp,电 泳检测的结果与预期相符(图1)。运用 Blast 对序列进行分 析,显示其与青凤蝶的COI基因和EF-1α基因具有很高

- 注: M. DNA 标准分子量(DL2000); 1~2. CO I 基因特异引物扩增 的 PCR 产物; 3~4. EF - 1α 基因特异引物扩增的 PCR 产物
- Note: M. DNA Marker (DL2000); 1 2. PCR product of CO I primers; 3 4. PCR product of $EF 1\alpha$ primers
- 图1 青凤蝶 3 个亚种 CO I 基因和 EF 1α 基因扩增产物电泳 检测结果
- Fig. 1 The eletrophoresis result of PCR product of CO I and $EF 1\alpha$ gene of G. sarpedon

2.2 序列组成分析 除外群外, CO I 基因部分序列共 709 bp,变异位点6 bp,无简约信息位点,自裔位点6 bp,碱基 组成上 T、C、A、G 的含量分别是 39.1%、16.5%、30.2%、 14.4%, A+T平均含量为69.3%,其中密码子第2 位点 A+ T含量最高,达90.5%,第2 位点 G含量最低,平均为0.4%, T含量最高,达49.0%,这表明密码子的碱基使用频率存在 明显的偏向性(表2)。

编号 No.	项目 Item	长度 bp	C bp	V bp	Pi bp	S bp	Т %	С %	A %	G %	A + T
1	全数据组(含外群)	709	632	77	0	77	39.1	16.5	30.2	14.4	69.3
2	全数据组(内群)	709	703	6	0	6	39.1	16.5	30.2	14.4	69.3
3	第1位点	237	236	1	0	1	42.0	24.1	17.3	16.9	59.3
4	第2位点	236	233	3	0	3	49.0	9.3	41.5	0.4	90.5
5	第3位点	236	234	2	0	2	27.0	16.1	31.8	25.4	58.8

表 2 青凤蝶 3 个亚种 CO I 基因序列组成 Table 2 The component of CO I gene sequences of 3 subspecies of G. sarpedon

注:C.保守位点;V.变异位点;Pi.简约信息位点;S.自裔位点

Note: C. conserved sites; V. variable sites; Pi. parsimony informative sites; S. singleton sites

核 *EF* - 1α 基因部分序列共 1 064 bp,变异位点 38 bp, 简约信息位点 6 bp,自裔位点 32 bp,T、C、A、G 的含量分别是 22.1%、28.6%、24.5%、24.8%,A+T平均含量为 46.6%,其 中第1位点含量最高,达到59.2%,第1位点G的含量最低, 平均为15.2%,T的含量最高,达到28%,表明密码子的碱基 使用频率也存在一定的偏向性(表3)。

	表 3	青凤蝶 3 个亚种 $EF - 1\alpha$ 基因序列组成	
--	-----	---------------------------------	--

Table 3	The component of EF	-1α gene sequences of 3	3 subspecies of G.	sarpedor
---------	---------------------	--------------------------------	--------------------	----------

编号 No.	项目 Item	长度 bp	C bp	V bp	Pi bp	S bp	Т %	С %	A %	G %	A + T %
1	全数据组(含外群)	1 064	973	91	8	83	21.8	28.6	24.5	24.8	46.3
2	全数据组(内群)	1 064	1 026	38	6	32	22.1	28.6	24.5	24.8	46.6
3	第1位点	355	349	6	0	6	28.0	26.0	31.2	15.2	59.2
4	第2位点	355	334	21	6	15	23.0	40.9	14.6	21.1	37.6
5	第3位点	354	343	11	0	11	15.0	18.9	27.7	38.1	42.7

注:C.保守位点数;V.变异位点数;Pi.简约信息位点;S. 自裔位点

Note: C. conserved sites; V. variable sites; Pi. parsimony informatic sites; S. singleton sites

通过 Paup4.0b10 软件对 CO I 基因和 $EF - 1\alpha$ 基因进行 PHT 检验(同质性检验 partition homogeneity test),结果显示 基因进化水平不具有显著差异(P = 1.0 > 0.01),因而可以将 2 组数据整合在一起进行分析。利用 MEGA6.0 软件,基于 Kimura - 2 参数对 COI和 $EF - 1\alpha$ 基因部分序列的整合数据

进行分析,统计碱基转换数与颠换数比值(R)。

由表4可知,核苷酸替换发生率比较低,第3位点略高, 转换多于颠换,第1位点最保守。转换数与颠换数比值(R) 平均为1.5<2,表现出较为明显的替换饱和。

	表4	青凤蝶3个	下亚种 CO	I 和 EF - 1a	κ 基因碱基	替换	
Table 4	The nucleotides	substitution	of CO I	and <i>EF</i> – 1 <i>a</i>	gene of 3	subspecies of G.	sarpedon

编号 No.	项目 Item	ii	si	sv	R	TT	TC	ТА	СТ	CC	AT	AC	AA	AG	GT	GA	GG
1	全数据组(含外群)	1 751	13	8	1.5	504	5	2	4	415	3	1	470	2	1	2	362
2	第1位点	589	2	1	2.2	152	1	0	1	123	0	0	138	0	0	0	175
3	第2位点	583	4	4	0.8	209	2	1	1	112	3	0	207	0	0	0	55
4	第3位点	580	8	3	2.4	143	3	0	2	180	0	0	125	1	1	1	132

注:ii. 相同碱基;si. 转换碱基;sv. 颠换碱基;R. 转换数/颠换数

Note: ii. identical pairs; si. transitionsal pairs; sv. transversional pairs; R. Ts/Tv

2.3 遗传距离分析 基于 Kimura - 2 参数,采用 MECA 6.0 计算个体间及亚种间的遗传距离(表 5)。不含外群的个体 两两之间的遗传距离在 0.1% ~ 0.5%,平均遗传距离是 0.3%,将 3 个亚种进行分组后计算遗传距离,并与外群对照 (表6),我国青凤蝶 3 个亚种间遗传距离是 0.30% ~ 0.34%,

两两之间的遗传距离相差很小,其中指名亚种[G. sarpedon sarpedon(Linnaeus)]与斑带亚种[G. sarpedon semifasciatum (Honrath)]差异相对更小,与蓝斑亚种[G. sarpedon connectens (Fruhstorfer)]的差异相对更大。

表 5 青凤蝶个体间 COI和 EF-1α基因 Kimura-2参数校正遗传距离(下三角)和标准差(上三角) Table 5 Pairwise distance(below diagonal) and standard errors(above diagonal) for COI and EF-1α gene between individual of G. sarpedon

个体 Individual	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
[1]	_	0.002	0.001	0.002	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.002	0.001	0.006
[2]	0.005	—	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002	0.002	0.001	0.001	0.001	0.006
[3]	0.002	0.002	—	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.006
[4]	0.005	0.005	0.002	—	0.001	0.002	0.001	0.001	0.002	0.002	0.001	0.001	0.002	0.001	0.006
[5]	0.003	0.003	0.001	0.003	_	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.006
[6]	0.005	0.005	0.003	0.005	0.004	—	0.001	0.002	0.002	0.002	0.001	0.002	0.001	0.001	0.006
[7]	0.003	0.003	0.001	0.003	0.002	0.002	—	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.006
[8]	0.005	0.005	0.002	0.003	0.003	0.005	0.003	—	0.001	0.002	0.001	0.001	0.001	0.001	0.006
[9]	0.004	0.003	0.002	0.004	0.003	0.005	0.002	0.004	—	0.002	0.001	0.001	0.001	0.001	0.006
[10]	0.005	0.005	0.002	0.005	0.003	0.005	0.003	0.005	0.004	—	0.002	0.002	0.002	0.001	0.006
[11]	0.004	0.004	0.002	0.004	0.003	0.005	0.002	0.004	0.003	0.004	—	0.001	0.001	0.001	0.006
[12]	0.004	0.002	0.002	0.004	0.003	0.005	0.002	0.004	0.002	0.004	0.003	—	0.001	0.001	0.006
[13]	0.004	0.004	0.002	0.004	0.003	0.005	0.002	0.004	0.003	0.004	0.003	0.003	_	0.001	0.006
[14]	0.003	0.003	0.001	0.003	0.002	0.003	0.001	0.003	0.002	0.003	0.002	0.002	0.002	—	0.006
[15]	0.081	0.079	0.078	0.079	0.079	0.081	0.079	0.081	0.079	0.081	0.080	0.079	0.080	0.079	_

注:[1] G. sarpedon sarpedon1;[2] G. sarpedon sarpedon2;[3] G. sarpedon sarpedon3;[4] G. sarpedon connectens1;[5] G. sarpedon connectens2;[6] G. sarpedon connectens2;[6] G. sarpedon connectens3;[7] G. sarpedon connectens_SH4;[8] G. sarpedon semifasciatum1;[9] G. sarpedon semifasciatum2;[10] G. sarpedon semifasciatum3;[11] G. sarpedon semifasciatum4;[12] G. sarpedon semifasciatum - SH1;[13] G. sarpedon semifasciatum_SH2;[14] G. sarpedon semifasciatum_SH3;[15] G. doson

表 6 青凤蝶 3 个亚种间 CO I 和 EF - 1α 基因 Kimura - 2 参数校正遗传距离(下三角)和标准差(上三角)

Table 6 The Kimura -2 parameter distance (below diagonal) and standard errors (above diagonal) for CO 1 and $EF - 1\alpha$ gene between 3 subspe-

cies of G. sarpedon

亚种 Subspecies	指名亚种 G. sarpedon sarpedon	蓝斑亚种 G. sarpedon connecten	斑带亚种 G. sarpedon semifasciatum	木兰青凤蝶 G. doson
指名亚种 G. sarpedon sarpedon	_	0.000 7	0.000 7	0.006 5
蓝斑亚种 G. sarpedon connecten	0.003 2	_	0.000 6	0.006 5
斑带亚种 G. sarpedon semifasciatum	0.003 0	0.003 4	_	0.006 4
木兰青凤蝶 G. doson	0.079 1	0.079 5	0.079 8	—

2.4 系统发育信号检测采用碱基替换饱和性分析,对数据进行系统发育信号强弱的检测,以遗传距离为横坐标,以碱基转换数和颠换数为纵坐标作散点图(图2)。

从图 2 可以看出,随着遗传距离的增大,Ts 增加的速度 大于 Tv 增加的速度,且与遗传距离之间有良好的线性关系, Tv 则逐渐趋于稳定,达到饱和。 通过 Paup4.0b10 软件对数据做 PTPtest 序列信息检验, 结果显示 *P* 为 0.002,表明该数据具有较显著的系统发育信 息,而非随机数据,可用来进行系统发育的推断^[5-6]。

3 讨论

我国青凤蝶分布有3个亚种,据《中国蝶类志》中描述, 青凤蝶的形态特征为翅窄长,底色黑,无尾状突起,前后翅中

图 2 青凤蝶碱基替换饱和分析

Fig. 2 The substitution saturation analysis of 3 subspecies of G. sarpedon

央贯穿1列略呈方形的蓝绿色斑(后翅前面的1个为白色), 后翅外缘有1列绿蓝色的新月斑。后翅反面近翅基有1条 红色短线,翅中部至后缘处有数条红色斑纹。

3 个亚种之间形态特征存在一些差异,青凤蝶蓝斑亚种 的绿色斑偏蓝,前翅顶角有1 个绿斑特别小;斑带亚种的后 翅色带不全。有学者提出青凤蝶的斑带亚种是一种变型,而 不是亚种。为此,该研究联合2 个基因序列的整合数据对青 凤蝶3 亚种间遗传变异进行了分析。之所以选择 COI和 $EF - 1\alpha$ 基因联合分析,一方面是增加系统发生分析的置信 度^[7-8],另一方面也与2 个基因各自的特点有关。线粒体 COI是编码线粒体细胞色素氧化酶亚基I的基因,是常用 的分子标记之一,它既相对保守又存在高变区,高变区内遗 传进化速率更快,种间的遗传差异也更明显,适合于种间和 种内分类鉴定及系统发生研究^[9]。 $EF - 1\alpha$ 基因进化速度比 较快,它也用于分析低阶元的系统发育,已有学者做了相关 的研究,如 Reed 等^[10]用线粒体 COI、COII基因的全长和核 基因的 $EF - 1\alpha$ 基因联合分析了凤蝶科凤蝶属 23 个种和亚 种的个体。

在鳞翅目同种个体之间, COI基因的差异为 0.25%^[11],从试验结果来看,我国青凤蝶3个亚种间COI基 因相似度为99.15%,核苷酸差异很小,表明COI基因在个 体间变异率较低。3个亚种间EF-1α基因相似度96.43%, 表明存在一定的变异率。3亚种青凤蝶在形态上的差异可能

(上接第155页)

代,拟南芥的脂肪酸含量增加 5.0% ~6.4%。Sellwood 等^[10] 通过反义表达技术,抑制 ACC 基因的表达,转基因植株的含 油量显著降低。

参考文献

- BASRI W M, ABDULLAH S N A, HENSON I E. Oil palm: Achievements and potential [J]. Plant production science, 2005, 8(3):288 – 297.
- [2] KOH L P, WILCOVE D S. Cashing in palm oil for conservation [J]. Nature, 2007, 448:993-994.
- [3] 李昌珠,李正茂. 植物脂肪酸的生物合成及其生理功能的研究进展 [J]. 湖南林业科技,2009,36(6):45-49.
- [4] ASHTON A R, JENKINS C L D, WHITFIELD P R. Molecular cloning of two different cDNAs for malize acetyl CoA carboxylase[J]. Plant Mol Biol, 1994,24(1):35-49.

是由于地理隔离形成,其自身的遗传变异性非常低^[12]。

从系统发育树的拓扑结构看,其未显示3个亚种间有很好的单系性,而出现了并系性,且各支自举检验值较低(<50%),因而没有列出发育树,置信度低下可能是因为分子数据所提供的信息位点较少^[13],或者是 COI 基因和 EF - 1α 基因序列突变达到饱和。结合对3个亚种基因序列两两距离进行 P-distance 计算,并按照亚种分组后计算遗传距离,可以看出指名亚种和斑带亚种的亲缘关系较近,但不足以认定斑带亚种是属于指名亚种的一种变型。

综上所述,结合目前已有的2个基因部分序列和各亚种 之间形态特征的差异,仍然适宜采用传统的基于形态学的青 凤蝶亚种分类体系。

参考文献

- [1] 武春生. 中国动物志:昆虫纲 第25卷 鳞翅目 凤蝶科[M]. 北京:科学 出版社,2001.
- [2] 魏忠民,武春生.中国青凤蝶变异型初步观察[J].昆虫知识,2006,43 (3):431-432.
- [3] 寿建新. 国内外蝴蝶分类认识总结[J]. 西安文理学院学报(自然科学版),2014,17(4):21-27.
- [4] 袁锋,袁向群.蝶类分子系统学研究进展[J].西北农业学报,2013,22 (12):1-14.
- [5] KIM K J,JANSEN R K. A chloroplast DNA phylogeny of lilacs (Syringa, Oleaceae): Plastome groups show a strong correlation with crossing groups [J]. American J Bot, 1998, 85(9): 1338-1351.
- [6] AUSTIN C C, ZUG G R. Molecular and morphological evolution in the south-central Pacific skink Emoia tongana(Reptilia;Squamata);Uniformity and human-mediated dispersal[J]. Australian J Zool,1999,47(5);425 – 437.
- [7] MONTEIRO A, PIERCE N E. Phylogeny of Bicyclus (Lepidoptera:Nymphalidae) inferred from COI, COII and EF-1α gene sequences [J]. Mol Phylogenet Evol, 2001, 18(2):264 – 281.
- [8] NORMARK B B. Molecular systematics and evolution of the aphid family Lachnidae[J]. Mol Phylogenet Evol, 2000, 14(1):131-140.
- [9] 吴冬霞,朱国萍,陈娜,等. 线蛱蝶亚科蝶类部分类群线粒体 COI 基因的分子系统发生分析[J]. 生命科学研究,2007,11(1):64-71.
- [10] REED R D,SPERLING F A. Interaction of process partitions in phylogenetic analysis: An example from the swallowtail butterfly genus Papilio [J]. Mol Biol Evol, 1999, 16(2):286-297.
- [11] HEBERT P D N,STOECKLE M Y,ZEMLAK T S, et al. Identification of birds through DNA barcodes [J]. PLoS Biol, 2004,2(10):1657-1663.
- [12] 叶维萍,叶海燕,卢慧甍,等. 基于线粒体 12S rRNA 和 ND5 基因序列的中国飞蝗属 3 亚种系统发育关系研究[J]. 昆虫分类学报,2005,27 (1):5-12.
- [13] 刘晓燕,吴孝兵,诸立新.中国黄粉蝶亚科六属间基于 COII和 EF -1α 基因部分序列的系统发育关系(鳞翅目:粉蝶科)[J].昆虫学报, 2007,50(6):604-609.

- [5] ALBAN C, BALDET P, DOUCE J. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxy propionate herbicides[J]. Biochem J, 1994, 30:557 – 565.
- [6] MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods, 2008, 5 (7):621-628.
- [7] OHLROGGE J, BROWSE J. Lipid biosynthesis [J]. Plant cell, 1995, 7(7): 957 – 970.
- [8] GENGENBACH B G, SOMERS D A, WYSE D L, et al. Transgenic plants expressing maize acetyl CoA carboxylase gene and method of altering oil content:6222099[P]. 2001 – 04 – 24.
- [9] OHLROGGE J B, ROESLER K R, SHORROSH B S. Method of increasing oil content of seeds:5925805[P]. 1999 – 07 – 20.
- [10] SELLWOOD C, SLABAS A R, RAWSTHORNE S. Effects of manipulating expression of acetypl-CoA carboxylasel in *Brassica napus* L. embryos[J]. Biochemical society, 2000, 28(6):598-600.