杂交稻 I 特优 3381 特征特性与主要经济性状研究

彭玉林 (福建省龙岩市农业科学研究所,福建龙岩 364000)

摘要 [目的]揭示主要经济性状对杂交稻 I 特优 3381 产量的影响规律。[方法]采用通径、相关、回归分析方法,对 I 特优 3381 产量及主要经济性状进行统计分析。[结果]有效稳、实粒数、千粒重等 3 个因素与产量关系密切;产量构成 4 个因素与产量均呈正相关,有效稳与产量呈极显著相关水平,有效稳与每稳总粒数呈负相关,但不显著;4 个产量构成因素的直接通径系数的大小依次为:实粒数 $(P_5=0.8097)$ >有效稳 $(P_3=0.6431)$ > 千粒重 $(P_7=0.5813)$ > 总粒数 $(P_4=0.1185)$ 。[结论]在 I 特优 3381 栽培过程中应主攻有效稳数和每稳实粒数,协调好稳粒关系,以达到增产的目的。

关键词 I 特优 3381;产量构成因子;通径分析;相关分析;回归分析

中图分类号 S511 文献标识码 A 文章编号 0517-6611(2015)20-068-03

Study on the Characteristics and Major Economic Traits of I-Tryou3381

PENG Yu-lin (Longyan Acaheny of Agicultural Sciences, Longyan, Fujian 364000)

Abstract [Objective] The paper was in order to reveal the effects of the characteristics and main economic traits on yield of I-Tryou3381. [Method] The characteristics and major economic traits of I-Tryou3381 were analyzed by statistical methods such as correlation analysis, path analysis and regression analysis. [Result] The result showed that the main factors such as the effective panicle number, total grains number and 1 000 grain weight were closely associated with production. Path analysis showed that direct path coefficient of four yield components; grains number ($P_5 = 0.8097$) > the effective panicle number ($P_3 = 0.6431$) > 1 000 grain weight ($P_7 = 0.5813$) > total grains number ($P_4 = 0.1185$). [Conclusion] Effective spike number per plant and the effective panicle number should be focused to increase the yield of I-Tryou3381.

Key words I-Tryou3381; Yield components; Path analysis; Correlation analysis; Regression analysis

杂交稻 I 特优 3381 是福建省龙岩市农业科学研究所龙特甫 A 与自选恢复系龙恢 3381 配组而成的基本营养型三系晚籼杂交稻组合^[1]。杂交水稻的产量与单株穗数、每穗粒数、千粒重、结实率等性状之间存在着复杂的相关关系。在不同地区、不同栽培条件下,产量构成因素对产量的影响有所侧重和变化。该研究通过对 I 特优 3381 特征特性及产量构成因子进行分析,明确其高产栽培的最佳途径,优化生产管理模式,为进一步提高产量提供基础资料。

1 材料与方法

1.1 特征特性观察试验 试验于 2013 年在福建省龙岩市新罗区龙门村进行。试验地前茬是烟草,地势平坦,灌溉条件较好,表层土为砂壤,0~20 cm 土层有机质含量为 32.32 g/kg,全氮 1.52 g/kg,碱解氮 136.59 mg/kg,有效磷 30.30 mg/kg,速效钾 48.50 mg/kg,pH 为 5.10。参试品种为 I 特优 3381,以汕优 63 为对照。试验随机排列,3 次重复,每个小区 13.3 m²,2013 年 6 月 20 日播种,7 月 18 日移栽,栽插规格为 20 cm×20 cm,10 月 25 日收割,田间管理同一般大田生产。生育期间进行特征特性和农艺性状观察记载。成熟时分别选取 10 株详细考察记录其产质量、抗性等表现。该品种的抗性鉴定由福建水稻新品种稻瘟病抗性联合鉴定完成,稻米品质由福建种子质量监督检验站完成。

1.2 产量构成因素试验 2014 年在龙岩市新罗区选择有代表性的不同肥力田块设立 15 个试验点,每个点设 3 次重复,每小区面积 13.3 m²。2014 年 6 月 20 日播种,7 月 18 日移栽,栽插规格 20 cm×20 cm,单本插,10 月 25 日收割。成熟

时对角线取样,每小区取 10 株,考察株高、穗长、有效穗、每穗总粒数、实粒数、结实率和千粒重,并计算其理论产量。综合各试验点资料进行统计分析。

2 结果与分析

2.1 I 特优 3381 的特征特性

2.1.1 形态特征。I 特伏 3381 株型松散适中、剑叶长宽度适中、上斜,叶片绿色,叶尖紫色,叶舌淡绿色,叶枕淡绿色,叶耳紫色,叶鞘绿色;群体整齐,后期转色好;茎秆较粗,谷粒形状为中粒形,谷壳金黄色,颖尖紫色,无芒,护颖长度中等,无颖毛,柱头紫色。

2.1.2 农艺性状。在龙岩地区作晚稻种植,I 特优 3381 全生育期 134 d,比对照汕优 63 迟熟 1 d(表 1)。

表1 I 特优 3381、汕优 63 生育期

П 11 н	播种期	插秧期	始穗期	齐穗期	成熟期	全生育
品种	月 – 日	月 – 日	月 – 日	月 – 日	月 – 日	期//d
I 特优 3381	06 - 20	07 – 18	09 – 17	09 - 22	11 - 02	134
汕优 63(CK)	06 - 20	07 – 18	09 – 18	09 - 22	11 - 02	133

I 特优 3381 株高 110.1 cm 左右,基本苗、最高苗、分蘖率都比对照略低,但单位面积有效穗达到 274.5 万穗/hm²,比对照多 9.0 万穗/hm²,成穗率达 58.0%,比对照高 1.1 百分点。I 特优 3381 穗长 23.2 cm,每穗总粒数 154.0 粒,结实率82.0%,千粒重 26.5 g,稻米外观好(表 2)。

I 特优 3381 杂株少,整齐度好,而 CK 有局部的杂株,后期熟期转色均好,抗倒伏,落粒性中等(表 3)。

2.1.3 抗逆性与稻米品质。2003 年由福建水稻新品种稻瘟病抗性联合社抗稻瘟病测定结果表明,I 特优 3381 田间鉴定表现抗(R)叶稻瘟,中抗(MR)穗颈瘟;2004 年田间鉴定表现高抗(MR)叶稻瘟,抗(R)穗颈瘟。根据福建省种子质量监

基金项目 福建省粮食作物育成技术重大专项(2004NZ01-1)。

作者简介 彭玉林(1979 -),男,福建武平人,助理研究员,硕士,从事

水稻遗传育种与栽培技术工作。

收稿日期 2015-05-18

表2 I特优 3381、汕优 63 分蘖、成穗、结实性状

品种	基本苗	最高苗	株高	分蘗率	有效穗	成穗率	穗长	穗总粒数	穗实粒数	结实率	千粒重
	万/hm²	万/ hm²	cm	%	万/hm²	%	cm	粒	粒	%	g
I 特优 3381	102.0	502.5	110.1	386.9	274.5	58.0	23.2	154.0	126.4	82.0	26.5
汕优 63(CK)	103.5	507.0	89.0	390.3	265.5	56.9	23.2	146.0	119.0	81.2	27.0

表3 I特优 3381、汕优 63 整齐度、熟期转色

品种	整齐度	杂株	熟期转色	倒伏性	落粒性
I 特优 3381	整齐	少	好	直	中
汕优 63(CK)	一般	中	好	直	中

督检验站报告表明,I 特优 3381 糙米率 82.2%,精米率 74.7%,整精米率 66.7%,粒长 6.2 mm,粒宽 2.5 mm,属于中粒型,垩白粒率 80%,垩白度 29.5%,透明度 1 级,碱消值6.1 级,稠度 30 mm,直链淀粉 22.9%,蛋白质含量 8.4%。I 特优 3381 糙米率、精米率、整精米率、透明度、碱消值 5 项指标达国标优一级,直链淀粉达国标优二级,蛋白质含量达国标优三级^[2],经检验符合三等食用籼稻品质规定要求。

2.1.4 产量表现。从表 4 中可知:在对比试验中,3 个小区 I 特优 3381 平均产量为 11.60 kg/13.3 m², 比汕优 63 (CK) 多 0.72 kg/13.3 m²,折合平均产量为 8 593.5 kg/hm²,比 CK 多 534.0 kg/hm²,增产6.63%; I特优3381的日平均产量为4.28

kg/d,比CK多0.24 kg/d。

表 4 I 特优 3381、汕优 63 产量表现

品种	小区平 均产量 kg/13.3 m ²	折合产量 kg/hm²	比对 照 ± %	日平均 产量 kg/d	比对 照 ± kg/d
I 特优 3381	11.60	8 593.5	6.63	4.28	0.24
汕优 63 (CK)	10.88	8 059.5	-	4.04	-

2.2 产量构成因素分析

2.2.1 逐步回归方程的建立与分析。通过对表 5 数据进行逐步回归分析^[3],建立了产量与株高、穗长、有效穗、总粒数、实粒数、结实率、千粒重的逐步回归方程(在 F=0.0000 0 下逐步回归): Y=-1 263. 515 033 -0.008 132 943 $181X_2+53.394$ 461 $45X_3+4.616$ 130 $747X_5+24.305$ 343 $200X_7$,相关系数 R=0.957 8。由方程可知:有效穗、实粒数、千粒重 3 个因子与产量关系密切,可用此方程来预知产量。株高、总粒数、结实率未约人方程,说明这 3 个因子对产量的影响不大。

表 5 I 特优 3381 产量及产量构成因素

`-₽-7A . E	株高 X_1	穗长 X ₂	有效穗	总粒数 X4	实粒数 X5	结实率 X_6	千粒重 X ₇	产量Y
试验点	em	cm	X_3	粒	粒	%	g	kg/hm²
1	109.2	23.1	12.7	170.0	140.8	82.8	27.1	10 903.5
2	107.4	23.2	11.9	158.1	136.9	86.6	25.9	9 493.5
3	108.6	23.3	12.1	150.2	126.8	84.5	26. 1	8 976.0
4	106.9	23.1	11.5	149.1	128.6	86.3	26.4	8 784.1
5	107.2	23.2	11.3	153.3	133.7	87.4	26.1	8 872.5
6	107.5	23.3	11.6	163.1	148.1	90.8	23.7	9 154.5
7	105.2	23.0	10.9	150.0	136.0	90.7	25.8	8 605.5
8	109.7	22.9	12.1	151.5	140.3	89.7	25.9	9 790.5
9	109.6	22.8	12.1	162.3	139.2	85.8	22.1	8 362.5
10	109.7	23.2	12.3	156.2	134.0	85.9	26.7	9 901.5
11	110.6	23.5	10.6	166.6	139.2	83.7	25.9	8 586.2
12	108.9	23.6	11.8	168.2	128.0	77.4	26.1	9 009.3
13	101.1	22.8	11.8	160.3	137.6	85.6	25.2	9 166.5
14	105.6	22.6	10.2	173.6	132.0	76.3	26. 1	7 906.5
15	111.0	23.3	11.6	138.5	112.1	81.2	25.9	7 570.5

2.2.2 产量及构成因素的偏相关关系。产量及其构成因素的相关分析^[4]:产量构成 4 个因子与产量均呈正相关,有效穗与产量相关呈极显著水平,可见有效穗是制约高产的第一因素,有效穗的增加能显著增加产量,其对产量的影响在所有产量构成因素中最为重要。有效穗与每穗总粒数呈负相关,但不显著,这表明有效穗的增加会削弱每穗总粒数对产量的增产效应,在保证达到一定穗数的前提下,提高每穗总粒数是获得高产的关键;有效穗与结实率呈正相关、结实率与千粒重呈负相关,均不显著,要充分发挥杂交稻 I 特优3381 的高产潜力,应在保证满足一定穗数的前提下,力争大

穗,提高结实率和千粒重(表6)。

2.2.3 产量及其构成因素的通径分析。株高、穗长、有效穗、总粒数、实粒数、结实率、千粒重这7个经济性状对产量性状的通径分析表明^[5]:有效穗、穗总粒数、结实率、千粒重4个产量因素对产量的直接通径系数均为正值,表明产量4因素对产量都有直接的正效应,在其他因素保持不变的情况下,通过提高4因素中的任何1个因素,均能提高产量(表7)。4个产量构成因素的直接通径系数大小依次为:实粒数(P_5 = 0.8097) > 有效穗(P_3 = 0.6431) > 千粒重(P_7 = 0.5813) > 总粒数(P_4 = 0.1185),所以在栽培过程中应充分协调各因素间

的关系,提高实粒数和有效穗,从而提高单位面积产量;株高、穗长、结实率对产量的直接通径系数均为负值,效应分别为 P_1 = -0.0028、 P_2 = -0.0187、 P_6 = -0.1139。决定系数为 R^2 = 0.92616,剩余通径系数 P_a = 0.27173。

3 结论与讨论

(1)I特优 3381 是福建省龙岩市农业科学研究所 I 龙特甫 A 与恢复系龙恢 3381 配组而成的基本营养型三系晚籼杂

表 6 I 特优 3381 产量构成因素的相关系数

性状	有效穗	穗总粒数	结实率	千粒重	产量
有效穗					
穗总粒数	-0.1122				
结实率	0.2027	0.6248*			
千粒重	0.025 8	-0.0918	-0.2841		
产量	0.685 1 * *	0.3074	0.2905	0.330 2	

注:*表示差异显著,**表示差异极显著。

表 7 7 个经济性状对 I 特优 3381 产量的通径系数

作用因子	直接作用	通过 X_1	通过 X_2	通过 X_3	通过 X_4	通过 X_5	通过 X_6	通过 X_7
株高 X ₁	-0.0028		-0.009 5	0. 165 7	0.013 1	-0.1623	0. 015 2	0.020 5
穗长 X_2	-0.0187	0.001 5		0.087 3	0.017 6	-0.1484	0.0078	0. 140 8
有效穗 X_3	0. 643 1	0.0007	-0.002 5		0.013 3	0.068 6	-0.023 1	-0.0150
总粒数 X_4	0. 118 5	-0.000 3	0.002 8	-0.072 1		0.5059	0.0430	-0.053 4
实粒数 X_5	0.8097	-0.0006	0.003 4	0.054 5	-0.0740		-0.0554	-0.1963
结实率 X_6	-0.113 9	-0.0004	0.001 3	0.130 3	0.044 7	0. 393 7		-0.165 2
千粒重 X_7	0.581 3	0.000 1	-0.004 5	-0.016 6	0.0109	-0.273 4	0.0324	

交稻新品种,株型松散适中、剑叶长宽度适中,分蘖力强,群体整齐,熟期转色好。全生育期134 d。小区平均产量为11.60 kg/13.3 m²,比对照汕多0.72 kg/13.3 m²,增产6.63%。糙米率、精米率、整精米率、透明度、碱消值5项指标达国标优一级,直链淀粉达国标优二级,蛋白质含量达国标优三级。I特优3381 田间鉴定表现抗(R)叶稻瘟,中抗(MR)穗颈瘟;2004 年田间鉴定表现高抗(MR)叶稻瘟,抗(R)穗颈瘟。

(2)建立了 I 特优 3381 产量与产量构成因素间的逐步回归方程 Y = -1 263. 515 033 -0. 008 132 943 $181X_2 + 53$. 394 461 $45X_3 + 4$. 616 130 $747X_5 + 24$. 305 343 $200X_7$,相关系数 R = 0. 957 8。由方程可知产量与有效穗、实粒数、千粒重等 3 个因子关系密切,可以用此方程来预知产量。

(3)产量及构成因素的相关分析表明:产量构成4个因子(有效穗、穗总粒数、结实率、千粒重)与产量均呈正相关,有效穗与产量相关呈极显著水平,可见有效穗是制约高产的第一因素,有效穗的增加能显著增加产量,其对产量的影响

在所有产量构成因素中最为重要。

(4)通径分析结果表明:产量 4 因素对产量都有直接的正效应,在其他因素保持不变的情况下,通过提高 4 因素中的任何 1 个因素,均能提高产量。4 个产量构成因素的直接通径系数的大小依次为:实粒数(P_5 = 0.8097) > 有效穗(P_3 = 0.6431) > 千 粒 重 (P_7 = 0.5813) > 总 粒 数 (P_4 = 0.1185)。在 I 特优 3381 栽培过程中应主攻有效穗数和每穗实粒数,以达到增产的目的。

参考文献

- [1] 兰华雄. 晚籼杂交稻新组合 I 特优 3381 选育及应用[J]. 亚热带农业研究,2008,13(8):23-26.
- [2] 彭玉林, 兰华雄. 杂交稻新组合 I 特优 338 特征特性与高产栽培技术 [J]. 广西农业科学, 2006, 3(2); 26-29.
- [3] 冯建成,杨彬元,郭福泰. 博优组合的产量构成因素分析[J]. 福建农业 科技,2008,237(5):14-15.
- [4] 吕锐玲,金红梅,周强,等. 南方稻区早籼产量与主要经济的分析[J]. 中国农学学报,2014,30(15):168-172.
- [5] 林玉棋,饶明钿,张冬松,等. 杂交水稻II优航 1 号产量构成因素分析与高产栽培技术研究[J]. 中国农学通报,2005,21(5):160-169.

(上接第67页)

高,单位产量为24705 kg/hm²,较早熟,比对照早熟8d,其次是"特级901青皮豇豆王",单位产量为22875 kg/hm²,这2个品种均表现中花量多、结荚多、质量好、抗病性强、口感好、产量高,综合商品性优,且植株中下部茎节短,生长势强,增产效果明显,适宜在吐鲁番地区推广种植。"农宝1号"和"宁豇三号豇豆"单位产量与对照相比也较高,商品性也较好,但其综合性状优势与对照品种相比不明显,其是否适合在当地推广种植还有待进一步研究。

参考文献

- [1] 贾利元,郭秀英,崔保伟. 黄淮海地区豇豆品种筛选试验[J]. 北方园 艺,2013(17):44-46.
- [2] 闰良, 葛长军, 徐丽荣. 3个豇豆品种秋延栽培适应性初步研究[J]. 热带农业科学. 2014. 34(2):18-20. 26.
- [3] 许如意,李劲松,曹兵,等. 春季设施豇豆品种比较试验[J]. 长江蔬菜: 学术版,2011(2):42-44.
- [4] 许如意,陈正,王丹美,等. 三亚市耐热豇豆品种比较试验初报[J]. 广西热带农业,2010(3):6-9.
- [5] 高俊杰,李衍素,张冬梅,等. 豇豆耐热性品种比较试验[J]. 西北农业学报,2007,16(3):157-161.
- [6] 常文静,张学超,杨明花,伊犁河谷豇豆品种比较试验[J]. 北方园艺, 2013(17):46-47.
- [7] 李莉, T建卫, 钱林, 等. 秋延后豇豆品种比较试验[J]. 上海蔬菜, 2014 (1):18.