乌鲁木齐地区牛口蹄疫 O型 Asia-I型双价灭活疫苗免疫效果的检测与分析

排合尔丁·穆太力甫¹. 李建玲²*. 马正海¹ (1. 新疆大学生命科学与技术学院,新疆乌鲁木齐 830046; 2. 乌鲁木齐市动物疾病 控制与诊断中心,新疆乌鲁木齐 830063)

摘要 [目的]研究乌鲁木齐地区牛口蹄疫 O 型 Asia-I 型双价灭活疫苗的免疫效果。[方法] 应用液相阻断 ELISA 法检测 492 份口蹄疫 O型 Asia-I型双价灭活疫苗的免疫效果。[结果]免疫牛群对牛口蹄疫 O型的平均免疫合格率为 97.6%,对 Asia-I型的平均免疫合格 率为97.7%。[结论] 牛口蹄疫 O 型 Asia-I 型双价灭活疫苗可以使免疫牛产生有效的免疫保护。

关键词 口蹄疫病毒; O型; Asia-I型; 双价灭活疫苗; 免疫保护

文章编号 0517-6611(2014)27-09400-02 中图分类号 S857.65 文献标识码 A

Immune Effect Detection of Bivalent Inactivated Vaccine of O-type Asia- I of Cattle Foot-and-mouth Disease in Urumqi Area Paiheerding Mutailifu¹, LI Jian-ling^{2*}, MA Zheng-hai¹ (1. College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046; 2. Urumqi Animal Disease Control and Diagnostic Center, Urumqi, Xinjiang 830063)

Abstract [Objective] The research aimed to study the immune effect of bivalent inactivated vaccine of O-type Asia I of cattle foot-and-mouth disease in Urumqi region. [Method] The immune effect of 492 bivalent inactivated vaccines of O-type Asia I of foot-and-mouth disease was detected by using liquid-phase blocking ELISA. [Result] The average immune qualified rate of the immunized cattle to O-type foot-and-mouth disease was 97.6%, and the average immune qualified rate to Asia I type was 97.7%. [Conclusion] The effective immune protection of immunized cattle could be obtained by using bivalent inactivated vaccine of O-type Asia-I of cattle foot-and-mouth disease.

Key words FMDV; O-type; Asia-I type; Bivalent inactivated vaccine; Immune protection

口蹄疫(Foot and mouth disease, FMD)是由口蹄疫病毒 (FMDV)引起的偶蹄类动物感染的一种急性、接触性传染 病,主要危害猪、牛、羊等70种家畜和野生动物,人类也易 感,对畜牧业造成巨大的危害[1]。自然感染口蹄疫的潜伏期 一般较短,2~8 d,有时可能为1~14 d,这取决于病毒感染 量、病毒毒株和传染方式等。牛口蹄疫的早期症状很可能包 括牛的产奶量减少,并伴随有厌食、精神沮丧和发热。此后1 d 左右口腔及周围、蹄部和乳房(尤其是乳头)可见水 泡[2-3]。FMDV 属于小 RNA 病毒科,病毒粒子外形呈二十面 体,由4种结构蛋白(VP1、VP2、VP3、VP4)各60个拷贝组成, 其共有 7 个血清型(O、A、C、SAT1、SAT2、SAT3、Asia-I型)。 据国际口蹄疫参考实验室对疫情通报统计,0型在世界范围 流行最广,其次为 Asia-I 和 A 型, C 型和南非三型非常罕见, 通常只在特定区域流行。目前,我国正面临以 O 型和 Asia-I 型为主要的口蹄疫病的大流行[4-6]。

快速诊断 FMDV 感染的家畜并对非疫区的动物实施疫 苗接种是控制口蹄疫暴发的主要策略。FMDV 7 个血清型之 间无交叉免疫保护,即使同一血清型不同毒株的抗原性也有 较大变化,对FMDV 主要抗原位点、细胞受体及其引起侵入 机体的免疫学反应等的深入研究对研制安全、高效的口蹄疫 疫苗至关重要。目前,包括亚单位疫苗、载体疫苗、基因缺失 疫苗、合成肽疫苗、核酸疫苗、植物反应器可饲疫苗和多表位 疫苗等在内的新型口蹄疫疫苗均见报道[7-9],这些新型疫苗 的研究取得了一些成果,但在免疫效果和生产成本等方面尚 无法与常规疫苗竞争,加上 FMDV 弱毒活疫苗有返强并使免 疫动物发病的危险,已被世界上大多数国家所摒弃,因此目

作者简介 排合尔丁・穆太力甫(1986-),男,新疆乌鲁木齐人,硕士 研究生,研究方向:生物化学与分子生物学。*通讯作者,

高级兽医师,从事动物疫病监测和诊断工作。

前口蹄疫预防和控制主要依靠口蹄疫灭活疫苗。

口蹄疫灭活疫苗是利用常规技术制造的以灭活病毒为 抗原的一类疫苗,灭活疫苗因其安全有效而被广泛应用于易 感家畜免疫接种。疫苗的免疫效果直接关系到口蹄疫的防 控效果。为了掌握乌鲁木齐市牲畜牛在接种口蹄疫 0 型 Asia-I型双价灭活疫苗后产生的免疫效果,笔者用口蹄疫液 相阻断 ELISA 抗体检测试剂盒对乌鲁木齐市不同地区该疫 苗免疫牛血清中粒子抗原抗体水平及免疫保护力进行研究, 以期为口蹄疫的预防与控制提供参考。

1 材料与方法

- 1.1 疫苗效果检测的样品来源及数量 样品来自于新疆维 吾尔自治区乌鲁木齐市7个区(天山区、米东区、头区、水区、 乌县、大阪城、新市区)向乌鲁木齐市动物疾病控制与诊断中 心送检免疫牛血清 492 份。采血牛是按照国家强制性免疫 接种要求(牲畜口蹄疫疫苗的免疫注射密度应达到99%以 上)给犊牛(奶牛)90日龄进行初免,间隔1个月进行1次强 化免疫,以后每隔4个月免疫1次的免疫程序免疫的,牛、羊 O型 Asia-I型双价口蹄疫灭活疫苗均为金字保灵生物药品 有限公司产品。
- 1.2 检测诊断试剂 口蹄疫液相阻断 ELISA 抗体检测试剂 盒购于中国农业科学院兰州兽医研究所。
- 1.3 检测方法 应用口蹄疫 O 型、亚I型抗体液相阻断 ELISA 检测试剂盒对免疫牛血进行 O 型、Asai-I 型口蹄疫免 疫抗体水平检测,检测方法参照试剂盒说明书。
- 1.4 结果判定 每块板设置 4 孔病毒抗原对照,直接用 PBST 稀释至工作浓度,与血清/病毒抗原复合物同步加入酶 标板孔,50 μl/孔。以病毒抗原对照平均 OD492 mm值的 50% 为 临界值,被检血清 OD492 mm 值大于临界值的孔为阴性孔,小于 等于临界值的孔为阳性孔。某份血清系列稀释中,阳性孔的 最高稀释倍数为被检血清是抗体效价。定性检测中,2个重

收稿日期 2014-08-18

复孔只要有1孔为阳性孔,则抗体滴度判定为1:64,2孔均为阳性孔,则判定为抗体滴度>1:64;当血清抗体滴度≥1:64时,判定抗口蹄疫抗体效价合格;存栏家畜免疫抗体合格率达70%时,判定为疫苗免疫合格。

2 结果与分析

采用 ELISA 法检测了 492 份口蹄疫 O型 Asia-I型双价 灭活疫苗免疫牛血清的免疫抗体水平、O型和 Asia-I型口蹄 疫抗体检测的合格率。由表 1可知,492 份免疫牛血样中,口蹄疫 O型测定值抗体滴度达到 1:64 以上的共有 480 份,平均免疫合格率为 97.6%;口蹄疫 Asia-I型共有 482 份,平均合格率为 97.7%,完全符合国家疫苗免疫要求(存栏家畜免疫抗体合格率达 70% 时判定合格)。

表 1 牛口蹄疫兔后抗体检测结果

检测地区	样品数量-	0 型		Asia-I 型	
		合格数	合格率//%	合格数	合格率//%
天山区	72	72	100	72	100
头区	70	67	96	67	96
米东区	70	68	97	64	91
水区	70	70	100	70	100
乌县	70	69	99	70	100
新市区	70	64	91	70	100
达坂城	70	70	100	68	97

3 讨论

梁宏志等^[10]报道哈尔滨地区牛、羊进行 O 型和 Asia I 型双价口蹄疫灭活疫苗合格率检测免疫合格率均为 72.3%。郑庆维等^[11]报道云南省龙陵县牛 O 型 Asia-I 型双价灭活疫

苗免疫合格率分别为 74% 和 76%。该试验检测出的牛口蹄 疫 O 型和 Asia-I 型双价灭活疫苗的免疫合格率较高,说明口 蹄疫 O 型 Asia-I 型双价灭活疫苗可以使免疫牛产生有效的 免疫保护。

参考文献

- [1] 丁耀忠,张杰,马丽娜,等. 口蹄疫及检测技术进展[J]. 中国农学通报, 2009,25(9):6-10.
- [2] ESTEBAN DOMINGO, ERIC BARANOWSKI, CRISTINA ESCARMIS, et al. Foot-and-mouth disease virus [J]. Immun. Comparative Immunology, Microbiology & Infectious Diseases, 2002, 25; 297 – 308.
- [3] 弗朗西斯科·索布林那,埃斯特班·多明戈. 口蹄疫现状与未来[M]. 北京:中国农业科学技术出版社,2009.
- [4] JOERN KLEIN, UNAL PARLAK, FUAT OZYÖRÜK. Understanding the molecular epidemiology of foot-and-mouth-disease virus [J]. Infection, Genetics and Evolution, 2009, 9:153 – 161.
- [5] GARABED R B, JOHNSON W O, THURMOND M C, et al. Analytical epidemiology of genomic variation among Pan Asia strains of foot-and-mouth disease virus [J]. Transbound Emerg Dis, 2009, 56;142 156.
- [6] ABILA R C. Foot and mouth disease in South-east Asia current status and control strategies [C]//Proceedings of the Foot and Mouth Disease International Symposium and Workshop. Melbourne Australian, 2010.
- [7] BACKER J A, HAGENAARS T J, NODELJIK G, et al. Vaccination against foot-and-mouth disease [J]. Epidemiological consequence [J]. Prev Vet Med, 2012, 170:27 – 40.
- [8] HALASA A D, MCCARL B A, CARPENTER T E, et al. Meta-analysis on the efficacy of foot-and-mouth disease emergency vaccination [J]. Prev Vet Med, 2013, 98;1-9.
- [9] 史兰广,邹兴启,朱元源,等. 影响口蹄疫疫苗效力的因素[J]. 中国兽 医杂志,2013,499(11):89-91.
- [10] 梁宏志,付志发.哈尔滨地区牛、羊 O 型和亚洲I型口蹄疫免疫效果检测报告[J]. 畜牧兽医科技信息,2010,36(4):593-596.
- [11] 郑庆维, 匡继才, 蒋照彩, 等. 牛口蹄疫 O型 Asia-I型双价(浓缩) 灭活疫苗免疫效果观察[J]. 中国兽医杂志, 2009, 45(8):51.

(上接第9372页)

为 VP2 蛋白的第 426 位氨基酸为 Asn(N)的 CPV-2 型属于 CPV-2a 亚型,这也得到了其他研究人员的一致认可^[7-9]。经 序列比对发现,YBYJ 株 CPV 的第 426 位氨基酸为 Asn(N),所以将其界定为 CPV-2a 亚型,属于我国目前流行病毒株 (CPV-2a、CPV-2b 和 CPV-2c)范畴。因此,笔者成功分离到 1 株 CPV(YBYJ 株),该病毒为 CPV-2a 亚型,属于强毒,成功克隆 CPV-VP2 基因,为下一步 CPV 疫苗研制和服务地方养犬业奠定了基础。

参考文献

- [1] 殷震,刘景华. 动物病毒学[M]. 2 版. 北京:科学出版社,1997;204 437.
- [2] APPEL M J, SCOTT F W, CARMICHAEL L E. Isolation and immunization studies of a canine parco-like virus from dogs with haemorrhagic enteritis [J]. Vet Rec, 1979, 105 (8):156-159.
- [3] 梁士哲,渠川玫,魏喜仁,等. 犬传染性肠炎的研究 1 腹泻狗粪便中检出的细小病毒样颗粒[J]. 上海畜牧兽医通讯,1982,2(4):172 175.
- [4] IKEDA Y, NAKAMURA K, MIYAZAWA T, et al. Feline host range of canine parvovirus; Recent emergence of new antigenic types in cats [J]. Per-

spectives, 2002, 8(4):1-11.

- [5] MUZ D,OGUZOGLU T C,TIMURKAN M O, et al. Characterization of the partial VP2 gene region of canine parvoviruses in domestic cats from Turkey [J]. Virus Gen, 2012, 44(2):301 – 308.
- [6] 刘大飞,王牟平,司微,等. 犬细小病毒黑龙江株 CPV-YN 的分离、鉴定及致弱的研究[J]. 中国预防兽医学报,2010,11(11):875-878.
- [7] BUONAVOGLIA C, MARTELLA V, PRATELLI A, et al. Evidence for evolution of canine parvovirus type 2 in Italy [J]. J Gen Virol, 2001, 82(12): 3021 3025.
- [8] MARTELLA V, CAVALLI A, PRAELLI A, et al. A canine parvovirus mutant is spreading in Italy [J]. J Clin Microbiol, 2004, 42(3):1333-1336.
- [9] NTAFIS V,XYLOURI E,KALLI I,et al. Characterization of Canine parvovirus 2 variants circulating in Greece [J]. J Vet Diagn Invest, 2010, 22 (5):737-740.
- [10] TRUYEN U. Evolution of canine parvovirus-A need for new vaccines [J]. Vet Microbiol, 2006, 117(1):9-13.
- [11] IKEDA Y1, MOCHIZUKI M, NAITO R, et al. Predominance of canine parvovirus (CPV) in unvaccinated cat populations and emeigence of new antigenic types of CPVs in cats [J]. Virology, 2000, 278(1):13-19.
- [12] PARRISH C R, AQUADRO C F, STRASSHEIN M I, et al. Rapid antigenic-type replacement and sequence evolution of canine parvovirus [J]. J Virol, 1991, 65 (12):6544-6552.